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Using the Clifford algebra formalism, we give an algebraic proof that the open unit ball

B = {v ∈ Rn: ‖v‖ < 1} of Rn equipped with Einstein addition ⊕E forms a B-loop or, equivalently,

a uniquely 2-divisible gyrocommutative gyrogroup. We obtain a compact formula for Einstein

addition in terms of Möbius addition. We then give a characterization of associativity and

commutativity of vectors in B with respect to Einstein addition.
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1. Introduction

Gyrogroup theory, introduced by Abraham A. Ungar, is related to various fields,
including mathematical physics. For instance, the gyrogroup structure appears as an
algebraic structure that encodes Einstein’s velocity addition law [11,14]. It is also an
algebraic structure that underlies the qubit density matrices, which play an important
role in quantum mechanics [6,10]. For a connection to Thomas precession, see [15].
Of particular importance is the following composition law of Lorentz boosts,

L(u) ◦ L(v) = L(u ⊕E v) ◦ Gyr[u, v],
where L(u) and L(v) stand for Lorentz boosts parameterized by u and v in
R3

c and Gyr[u, v] is a rotation of spacetime coordinates induced by the Einstein
gyroautomorphism generated by u and v [12, p. 448]. Connections between Einstein
addition, Möbius addition, and hyperbolic geometry are described in [7, 9]. For
a connection to loops, see [5].

In [11], Einstein velocity addition, ⊕E , on the set of relativistically admissible
velocities, R3

c = {v ∈ R3: ‖v‖ < c}, is given by the equation

u ⊕E v = 1

1 + 〈u, v〉/c2

{
u + 1

γu

v + 1

c2

γu

1 + γu

〈u, v〉u
}

,
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where c is a positive constant representing the speed of light in vacuum and γu is
the Lorentz factor given by

γu = 1√
1 − ‖u‖2/c2

.

The system (R3
c, ⊕E) does not form a group since ⊕E is neither associative

nor commutative. Nevertheless, (R3
c, ⊕E) is rich in structure and encodes a group-

like structure, namely the gyrogroup structure. Ungar declared that (R3
c, ⊕E) forms

a gyrocommutative gyrogroup, the so-called Einstein gyrogroup, where the gyrogroup
axioms can be checked using computer algebra. It seems to us that no solid proof
of this result is given in the literature. For this reason, we use the Clifford algebra
formalism to prove this result. It turns out that Einstein gyroautomorphisms, also
known as Thomas gyrations, can be expressed in a simple form using Clifford
algebra operations.

Another example of a gyrogroup is the Möbius gyrogroup, which consists of the
complex unit disk D = {z ∈ C: |z| < 1} and Möbius addition

a ⊕M b = a + b

1 + āb
, a, b ∈ D.

In [13], the complex Möbius addition is extended to the Euclidean one,

u ⊕M v = (1 + 2〈u, v〉 + ‖v‖2)u + (1 − ‖u‖2)v

1 + 2〈u, v〉 + ‖u‖2‖v‖2
, u, v ∈ B.

Here, B denotes the open unit ball of Rn,

B = {v ∈ Rn: ‖v‖ < 1}.
Because the formula for the Euclidean version of Möbius addition is very

complicated, Lawson [8] and Ferreira and Ren [2] used the Clifford algebra
formalism to study the Möbius gyrogroup and to simplify Möbius addition,

u ⊕M v = (u + v)(1 − uv)−1, (1)

where the product and inverse on the right-hand side of Eq. (1) are performed in
the Clifford algebra of negative Euclidean space.

With the compact formula (1) for Möbius addition in hand, we give an algebraic
proof that the unit ball of Rn with Einstein addition does form a B-loop or a gy-
rocommutative gyrogroup with the uniquely 2-divisible property. As a consequence,
we give a characterization of associativity and commutativity of the elements of
Einstein gyrogroup (B, ⊕E).

2. Preliminaries

Let (G, ⊕) be a magma. Denote the group of automorphisms of G with respect
to ⊕ by Aut (G, ⊕).
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DEFINITION 1. ([12]) A magma (G, ⊕) is a gyrogroup if its binary operation
satisfies the following axioms.
(G1) There is an element 0 ∈ G such that 0 ⊕ a = a for all a ∈ G.(left identity)
(G2) For each element a ∈ G, there is an element b ∈ G such that b ⊕ a = 0.(left

inverse)
(G3) For all a, b ∈ G, there is an automorphism gyr[a, b] ∈ Aut (G, ⊕) such that

for all c ∈ G,

a ⊕ (b ⊕ c) = (a ⊕ b) ⊕ gyr[a, b]c. (left gyroassociative law)

(G4) For all a, b ∈ G, gyr[a, b] = gyr[a ⊕ b, b]. (left loop property)

DEFINITION 2. ([12]) A gyrogroup (G, ⊕) having the additional property that

a ⊕ b = gyr[a, b](b ⊕ a) (gyrocommutative law)

for all a, b ∈ G is called a gyrocommutative gyrogroup.

We remark that the axioms in Definition 1 imply the right counterparts. The
map gyr[a, b] is called the gyroautomorphism generated by a and b. We refer the
reader to [12] for a deep discussion of gyrogroups.

DEFINITION 3. A magma L has the uniquely 2-divisible property if the squaring
map x 7→ x2 is a bijection from L to itself.

DEFINITION 4. A loop L has the Aℓ-property if the left inner mapping

ℓ(a, b) := L−1
ab ◦ La ◦ Lb

defines an automorphism of L for all a, b ∈ L. Here, La denotes the left multiplication
map by a defined by La: x 7→ ax for x ∈ L.

A loop L is called a K-loop or Bruck loop if every element of L has a unique
inverse and L satisfies the left Bol identity (I) and the automorphic inverse property
(II):
(I) a(b(ac)) = (a(ba))c

(II) (ab)−1 = a−1b−1

for all a, b, c ∈ L. A loop L is called a B-loop if it is a uniquely 2-divisible
K-loop. In the literature, it is known that gyrogroups and left Bol loops with the
Aℓ-property are equivalent, and that uniquely 2-divisible gyrocommutative gyrogroups
and B-loops are equivalent.

In order to prove that the unit ball of Rn with Einstein addition forms a uniquely
2-divisible gyrocommutative gyrogroup, we make use of the following theorem.

THEOREM 1. (Theorem 1, [1]) Let (G, ⊕) be a gyrogroup, X an arbitrary
space, and φ: X → G a bijection between G and X. Then X endowed with the
induced operation

a ⊕X b := φ−1(φ(a) ⊕ φ(b))

for a, b ∈ X becomes a gyrogroup.
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PROPOSITION 1. Let (G, ⊕) be a gyrogroup. If (G, ⊕) is gyrocommutative, then
so is the induced gyrogroup (X, ⊕X). If (G, ⊕) is uniquely 2-divisible, then so is
(X, ⊕X).

Proof : The proof of the first statement is straightforward. Let DG and DX denote
the doubling maps of G and X, respectively. Assume that G is uniquely 2-divisible,
that is, DG is bijective. For all x ∈ X,

DX(x) = x ⊕X x = φ−1(φ(x) ⊕ φ(x)) = φ−1(DG(φ(x))) = (φ−1 ◦ DG ◦ φ)(x).

It follows that DX = φ−1 ◦ DG ◦ φ and hence DX is bijective, which proves that X
is uniquely 2-divisible. �

3. Quadratic spaces and Clifford algebras

Let V be a vector space over a field F of characteristic different from 2.
A quadratic form Q on V is a map Q: V → F such that
(1) Q(λv) = λ2Q(v) for all λ ∈ F, v ∈ V and
(2) the map B: V × V → F defined by

B(u, v) = 1

2

(
Q(u + v) − Q(u) − Q(v)

)

is a symmetric bilinear form on V .
Note that any symmetric bilinear form B on V gives rise to a quadratic form Q by
defining Q(v) = B(v, v) for v ∈ V . A quadratic space is a vector space equipped
with a quadratic form on which the associated bilinear form is nondegenerate.
Let (V , Q) be a quadratic space with the corresponding bilinear form B. A basis
{e1, e2, . . . , en} of V is orthogonal if B(ei, ej ) = 0 for all i 6= j .

Let {e1, e2, . . . , en} be an orthogonal basis for (V , Q). The Clifford algebra of
(V , Q), written CℓQ, is a unital associative algebra over F with a basis

{eI : I = ∅ or I = {1 ≤ i1 < i2 < · · · < ik ≤ n}},
where e∅ := 1 and eI := ei1

ei2
· · · eik for I = {1 ≤ i1 < i2 < · · · < ik ≤ n}. From

this a typical element of CℓQ is of the form
∑
I

λIeI , λI ∈ F. Vector addition and

scalar multiplication of CℓQ are defined pointwise, and multiplication is performed
by using the distributive law without assuming commutativity subject to the defining
relations

e2
i = Q(ei)1 and eiej = −ejei

for i 6= j .
In CℓQ, one has relations v2 = Q(v)1 and uv +vu = 2B(u, v)1 for all u, v ∈ V .

The base field F is embedded into CℓQ by the map λ 7→ λ1, and V is naturally
embedded into CℓQ by inclusion. For a deep discussion of Clifford algebras, we
refer the reader to [4].

There are three standard maps of a Clifford algebra. One is an involutive algebra
automorphism, and the others are involutive algebra anti-automorphisms. Table 1
summarizes basic properties of such maps.
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MAP TYPE ON V

reversion ρ(a) = ã anti-automorphism idV

grade involution τ(a) = â automorphism −idV

Clifford conjugation κ(a) = a anti-automorphism −idV

Table 1. Three standard maps of CℓQ.

The Clifford or Lipschitz group of CℓQ, written Ŵ(Q), is defined via the grade
involution as

Ŵ(Q) = {g ∈ Cℓ×
Q: ∀v ∈ V, ĝvg−1 ∈ V }.

In the finite-dimensional case, Ŵ(Q) does form a subgroup of the group of units
of CℓQ. Further, the grade involution descends to a group automorphism of Ŵ(Q),
and the reversion and Clifford conjugation descend to group anti-automorphisms of
Ŵ(Q).

Let η: CℓQ → CℓQ be the map defined by

η(a) = aa

for a ∈ CℓQ. It can be proved that η(g) belongs to F×1 := {λ1: λ ∈ F×} for all
g ∈ Ŵ(Q) and hence the restriction of η to Ŵ(Q) is a group homomorphism.

PROPOSITION 2. The restriction of η to Ŵ(Q) is a group homomorphism from
Ŵ(Q) to F×1. Furthermore, η is multiplicative over the set of products of vectors
in V in the sense that

η(v1v2 · · · vk) = η(v1)η(v2) · · · η(vk)

for all v1, v2, . . . , vk ∈ V .

Proof : This is because η(g) and η(v) are scalar multiples of unity for all
g ∈ Ŵ(Q) and v ∈ V . �

Invertibility of elements of the form 1 + uv

In this subsection, we provide a necessary and sufficient condition for invertibility
of elements of the form 1 + uv, where u and v are vectors in a quadratic space.
Let (V , Q) be a quadratic space with the corresponding bilinear form B. From now
on, the term vector is reserved for the elements of V .

LEMMA 1. If u, v and w are vectors, then so are uvu and uvw + wvu.

Proof : This follows from the fact that uv + vu = 2B(u, v)1 for all u, v ∈ V . �

PROPOSITION 3. If u and v are vectors, then either

(1) 1 + uv is a product of vectors or
(2) 1 + uv belongs to Ŵ(Q) and η(1 + uv) = 1.
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Proof : Recall that if w is a nonisotropic vector, then w is invertible and
w−1 = w/Q(w) is again a vector. If u or v is nonisotropic, then 1+uv is a product
of vectors. We may therefore assume that u and v are isotropic. If B(u, v) 6= 0,
then u + v is invertible and

1 + uv = (u + v + 2B(u, v)u)(u + v)−1

is a product of vectors. If B(u, v)=0, then η(1+uv)=1+2B(u, v)1+Q(u)Q(v)1=1.
By the lemma, τ(1 + uv)w(1 + uv)−1 = w + wvu + uvw + uvwvu belongs to V for
all w ∈ V . Hence, 1 + uv ∈ Ŵ(Q). �

PROPOSITION 4. For all u, v ∈ V , 1 + uv ∈ Ŵ(Q) if and only if η(1 + uv) 6= 0.

Proof : (⇒) If 1 + uv ∈ Ŵ(Q), then η(1 + uv) ∈ F×1. Hence, η(1 + uv) 6= 0.

(⇐) Suppose that η(1 + uv) 6= 0. By Proposition 3, either 1 + uv already
belongs to Ŵ(Q) or 1 + uv is a product of vectors. In the latter case, 1 +
uv = w1w2 · · · wk for some w1, w2, . . . , wk in V . Because 0 6= η(1 + uv) =
η(w1w2 · · · wk) = η(w1)η(w2) · · · η(wk), none of η(wi) are zeros. Thus, w1, w2, . . .,
and wk are all nonisotropic vectors and hence 1 + uv belongs to Ŵ(Q). �

4. Negative Euclidean space

The negative Euclidean space consists of the underlying vector space Rn with
a nondegenerate symmetric bilinear form

B(u, v) = −〈u, v〉, u, v ∈ Rn,

where 〈·, ·〉 denotes the usual Euclidean inner product of Rn. Its associated quadratic
form is given by Q(v) = −‖v‖2 for v ∈ Rn.

For convenience, let Cℓn denote the Clifford algebra of negative Euclidean space,
let Ŵn denote the Clifford group of Cℓn, and let {e1, e2, . . . , en} be the standard
basis of Rn. From now on, we identify elements of R1 with real numbers, that is,
r1 ↔ r for r ∈ R.

PROPOSITION 5. In the Clifford algebra Cℓn, the following properties hold.

(1) uv + vu = −2〈u, v〉 for all u, v ∈ Rn.
(2) v2 = −‖v‖2 for all v ∈ Rn.
(3) e2

i = −1, eiej = −ej ei for 1 ≤ i, j ≤ n and i 6= j .

(4) 1 − uv ∈ Ŵn and (1 − uv)−1 = 1 − vu

η(1 − uv)
for all u, v ∈ Rn with ‖u‖‖v‖ 6= 1.

(5) η(w(1 − uv)−1) = η(w)

η(1 − uv)
for all u, v, w ∈ Rn with ‖u‖‖v‖ 6= 1.

Proof : Items (1)–(3) follow from the defining relations in Cℓn.
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(4) The Cauchy–Schwarz inequality gives

η(1 − uv) = 1 + 2〈u, v〉 + ‖u‖2‖v‖2

≥ 1 − 2‖u‖‖v‖ + ‖u‖2‖v‖2

= (1 − ‖u‖‖v‖)2.

It follows that if u, v ∈ Rn with ‖u‖‖v‖ 6= 1, then η(1 − uv) > 0 and hence
1 − uv ∈ Ŵn by Proposition 4. Since 1 − uv ∈ Ŵn, we have

(1 − uv)−1 = 1 − uv

η(1 − uv)
= 1 − vu

η(1 − uv)
.

(5) Let u, v, w ∈ Rn with ‖u‖‖v‖ 6= 1. If w = 0, equality holds trivially. We
may therefore assume that w 6= 0. Hence, w ∈ Ŵn. By Item (4), 1 − uv ∈ Ŵn and so

η(w(1 − uv)−1) = η(w)η((1 − uv)−1) = η(w)

η(1 − uv)

since η is a group homomorphism of Ŵn. �

5. Möbius and Einstein gyrogroups on Rn

Using relations v2 = −‖v‖2 and uv + vu = −2〈u, v〉 in the Clifford algebra of
negative Euclidean space, Lawson [8] verified that

(u + v)(1 − uv)−1 = (1 + 2〈u, v〉 + ‖v‖2)u + (1 − ‖u‖2)v

1 + 2〈u, v〉 + ‖u‖2‖v‖2
= u ⊕M v

for all u, v ∈ B. Hence, the Euclidean version of Möbius addition has a compact
formula analogous to the complex case. He also dealt with the group of Möbius
transformations of Rn that preserve the open unit ball to prove that (B, ⊕M) is
indeed a B-loop.

In light of the proof of Proposition 5, η(1 − uv) ≥ 0 for all u, v ∈ Rn. Hence,
the notation |1 − uv| :=

√
η(1 − uv)

is meaningful whenever u and v are vectors in Rn. Further, |v| = ‖v‖ for all v ∈ Rn.

THEOREM 2. ([8]) The Möbius loop on the open unit ball in Rn forms a B-loop
whose operation is given in terms of the Clifford algebra Cℓn by

u ⊕M v = (u + v)(1 − uv)−1. (2)

The left inner mappings are given by ℓ(u, v)w = qwq−1, where q = 1 − uv

|1 − uv| .

Combining Eq. (2) with Proposition 5 (5) gives

η(u ⊕M v) = η(u + v)

η(1 − uv)
(3)

for all u, v ∈ B.
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From now on, we work in the Clifford algebra of negative Euclidean space,
Cℓn. In light of Theorem 1 and Proposition 1, we express Einstein addition via
Möbius addition to deduce that (B, ⊕E) forms a uniquely 2-divisible gyrocommutative
gyrogroup.

For each v ∈ B, set

rv = 1

1 +
√

1 − ‖v‖2
. (4)

Then

rv = 1 −
√

1 − ‖v‖2

‖v‖2

and

rv = 1

1 +
√

1 + v2

in Cℓn. According to the Lorentz factor normalized to c = 1, we have

rv = 1

1 + γ −1
v

= γv

1 + γv

.

It follows that 0 < rv < 1. In fact, rv is a solution to the quadratic equation
‖v‖2x2 − 2x + 1 = 0 in the variable x. Hence,

2rv

1 − r2
v v2

= 1. (5)

Let 9 be the map defined on B by

9(v) = rvv, v ∈ B. (6)

Since 0 < rv < 1, we have ‖9(v)‖ = ‖rvv‖ = rv‖v‖ < 1. Hence, 9(B) ⊆ B.

Let 8 be the map defined on B by

8(v) = v ⊕M v. (7)

From Eq. (2), we have

8(v) = 2v

1 − v2
= 2v

1 + ‖v‖2
.

The map 8 is called the doubling map and is of importance for the study of
Möbius and Einstein gyrogroups, see for instance [7].

In the case ‖v‖ = 0, v = 0 and hence ‖8(v)‖ = ‖8(0)‖ = ‖0‖ = 0. In the case
0 < ‖v‖ < 1,

‖8(v)‖ = 2
1

‖v‖ + ‖v‖
< 1

since
1

‖v‖ + ‖v‖ > 2. It follows that 8(B) ⊆ B.
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PROPOSITION 6. The maps 9 and 8 are bijections from B to itself and are
inverses of each other.

Proof : Let v ∈ B. Since 1 − ‖8(v)‖2 = 1 − 4‖v‖2

(1 + ‖v‖2)2
=

(
1 − ‖v‖2

1 + ‖v‖2

)2

, we

have

1 +
√

1 − ‖8(v)‖2 = 1 + 1 − ‖v‖2

1 + ‖v‖2
= 2

1 + ‖v‖2
= 2

1 − v2
.

It follows that (9 ◦ 8)(v) = 9(8(v)) = r8(v)8(v) = 1

1 +
√

1 + 8(v)2

2v

1 − v2
= v.

From Eq. (5), we have

(8 ◦ 9)(v) = 8(9(v)) = 29(v)

1 − 9(v)2
= 2rv

1 − r2
v v2

v = v.

This proves 9 ◦8 = idB and 8◦9 = idB. Hence, 8 and 9 are bijections, 8−1 = 9,
and 9−1 = 8. �

PROPOSITION 7. The unit ball B with the induced operation

u ⊕B v = 9−1(9(u) ⊕M 9(v)), u, v ∈ B,

forms a uniquely 2-divisible gyrocommutative gyrogroup.

Proof : The proposition follows from Theorem 1 and Proposition 1 applied to
(B, ⊕M) and 9. �

In fact, the induced addition ⊕B is nothing but Einstein addition, as shown in
the following theorem.

THEOREM 3. For all u, v ∈ B,

u ⊕B v = u ⊕E v.

In particular, (B, ⊕E) forms a uniquely 2-divisible gyrocommutative gyrogroup. In
terms of the Clifford algebra Cℓn, Einstein addition can be rewritten as

u ⊕E v = 2(ruu ⊕M rvv)
(
1 − (ruu ⊕M rvv)2

)−1
(8)

and the Einstein gyroautomorphisms are given by

gyr[u, v]w = qwq−1, q = 1 − rurvuv

|1 − rurvuv| ,

for all u, v, w ∈ B.

Proof : Since 9−1 = 8, we have

u ⊕B v = 8(9(u) ⊕M 9(v)) = 2

1 − [9(u) ⊕M 9(v)]2
[9(u) ⊕M 9(v)].
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Note that η(9(u) ⊕M 9(v)) = [9(u) ⊕M 9(v)]9(u) ⊕M 9(v) = −[9(u) ⊕M 9(v)]2

since 9(u) ⊕M 9(v) ∈ Rn. Eqs. (2) and (3) and Proposition 5 together imply

u ⊕B v = 2

1 + η(9(u) ⊕M 9(v))
[9(u) ⊕M 9(v)]

= 2

1 + η(9(u) + 9(v))

η(1 − 9(u)9(v))

[9(u) + 9(v)][1 − 9(u)9(v)]−1

= 2[9(u) + 9(v)][1 − 9(v)9(u)]
η(9(u) + 9(v)) + η(1 − 9(u)9(v))

.

(9)

Since 1 − r2
uu2 − r2

v v2 + r2
uu2r2

v v2 = (1 − r2
uu2)(1 − r2

v v2) = (2ru)(2rv) = 4rurv, we
have

η(9(u) + 9(v)) + η(1 − 9(u)9(v)) = 1 − r2
uu2 − r2

v v2 + r2
uu2r2

v v2 + 4rurv〈u, v〉
= 4rurv(1 + 〈u, v〉). (10)

We also have

1

2rurv

[9(u) + 9(v)][1 − 9(v)9(u)]

= u

2rv

− ru

2
uvu + v

2ru

− rv

2
v2u

= 1

2

(
1

rv

− rvv2

)
u − ru

2
(uv + vu)u + 1

2

(
ruu2 + 1

ru

)
v

= u + γu

1 + γu

〈u, v〉u + 1

γu

v.

(11)

We obtain the third equation of (11) because
1

rw

= 1 +
√

1 − ‖w‖2 = 1 + 1

γw

and

rww2 = 1 −
√

1 − ‖w‖2

‖w‖2
(−‖w‖2) =

√
1 − ‖w‖2 − 1 = 1

γw

− 1

for all w ∈ B. Combining Eqs. (9)–(11) gives

u ⊕B v =
4rurv

{
u + γu

1 + γu

〈u, v〉u + 1

γu

v

}

4rurv(1 + 〈u, v〉)

= 1

1 + 〈u, v〉

{
u + 1

γu

v + γu

1 + γu

〈u, v〉u
}

= u ⊕E v.



T. SUKSUMRAN and K. WIBOONTON 73

The second part of the theorem follows from the result that

gyrE[u, v] = ℓ(8(u), 8(v))

and Theorem 2. �

Eq. (8) shows a close relationship between elements of Einstein and Möbius
gyrogroups. See also [12, Eq. (6.297)] and [1, Proposition 6]. In terms of Einstein
scalar multiplication [12, p. 218], given by

r ⊗E v = (1 + ‖v‖)r − (1 − ‖v‖)r
(1 + ‖v‖)r + (1 − ‖v‖)r

v

‖v‖ , r ∈ R, 0 6= v ∈ B, (12)

Eqs. (6) and (7) can be rewritten as

9(v) = 1

2
⊗E v and 8(v) = 2 ⊗E v,

which reflects the fact that 9 and 8 are inverses of each other.

Although the result that Einstein addition can be expressed via Möbius addition
is known, see Friedman and Scarr [3, Eq. (2.13)], we obtain these results using
a different technique. In fact, Friedman and Scarr obtained the result using the
principle of special relativity, whereas we use an algebraic approach.

We end this section with the following characterization of associativity and
commutativity of the elements of Einstein gyrogroup (B, ⊕E).

THEOREM 4. For all u, v, w ∈ B,

u ⊕E (v ⊕E w) = (u ⊕E v) ⊕E w

if and only if 〈u, w〉 = 〈v, w〉 = 0 or u‖v.

Proof : (⇒) Suppose that u ⊕E (v ⊕E w) = (u ⊕E v) ⊕E w. Since 9: (B, ⊕E) →
(B, ⊕M) is a gyrogroup isomorphism, we have 9(u)⊕M (9(v)⊕M 9(w)) = (9(u)⊕M

9(v)) ⊕M 9(w). By Lemma 10 of [2], 〈9(u), 9(w)〉 = 〈9(v), 9(w)〉 = 0 or
9(u)‖9(v). By Eq. (6), 〈ruu, rww〉 = 0 = 〈rvv, rww〉 or ruu‖rvv, which implies the
desired statement.

(⇐) If 〈u, w〉 = 〈v, w〉 = 0, then 〈9(u), 9(w)〉 = 〈ruu, rww〉 = 0. Similarly,
〈9(v), 9(w)〉 = 0. Hence, 9(u) ⊕M (9(v) ⊕M 9(w)) = (9(u) ⊕M 9(v)) ⊕M 9(w).
Applying 8 to both sides of the equation gives u ⊕E (v ⊕E w) = (u ⊕E v) ⊕E w
since 8 = 9−1 and 8 preserves the operations. If u‖v, then 9(u)‖9(v) and so
the same reasoning applies. �

THEOREM 5. For all u, v ∈ B,

u ⊕E v = v ⊕E u

if and only if u‖v.

Proof : If u ⊕E v = v ⊕E u, then 9(u) ⊕M 9(v) = 9(v) ⊕M 9(u). By Lemma
11 of [2], 9(u)‖9(v). Hence, u‖v. Conversely, if u‖v, then 9(u)‖9(v), which
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implies 9(u) ⊕M 9(v) = 9(v) ⊕M 9(u). Applying 8 to both sides of the equation
gives u ⊕E v = v ⊕E u. �
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