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Abstract

It is known that rings and modules over rings are related algebraic structures. Moreover,
near rings and modules over near rings are generalized algebraic structures of rings and
modules over rings, respectively. In this paper, we introduce and study 2-absorbing ideals
of near rings and 2-absorbing R-ideals of modules over near rings which are extended from
prime ideals of near rings and prime R-ideals of modules over near rings, respectively.
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1 Introduction

In 2007, Badawi [1] introduced the concept of 2-absorbing ideals of commutative rings with
identity, which is a generalization of prime ideals, and investigated some properties. He defined
a 2-absorbing ideal P of a commutative ring R with identity to be a proper ideal of R and
if whenever a, b, c ∈ R with abc ∈ P , then ab ∈ P or bc ∈ P or ac ∈ P . In 2011, Darani and
Soheilnia [4] introduced the concept of 2-absorbing submodules of modules over commutative
rings with identities. A proper submodule P of a module M over a commutative ring R with
identity is said to be a 2-absorbing submodule of M if whenever a, b ∈ R and m ∈ M with
abm ∈ P , then abM ⊆ P or am ∈ P or bm ∈ P . One can see that 2-absorbing submodules are
generalization of prime submodules. Moreover, it is obvious that 2-absorbing ideals are special
cases of 2-absorbing submodules.

It is known that a near ring is an algebraic structure similar to a ring. In 1991, Groenewald [7]
introduced the notion of prime ideals of near rings. Moreover, Booth and Groenewald [2]
extended prime ideals of near rings to prime R-ideals of modules over near rings.

In this paper, we aim to study the notion that generalizes prime R-ideals of modules over
near rings in the same way as prime submodules of modules over rings were extended, called
2-absorbing R-ideals. Furthermore, we investigate some properties of 2-absorbing R-ideals of
decomposable modules over near rings.

2 Preliminaries

We collect definitions of near rings and modules over near rings as well as present some results
which are used in this paper.
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2.1 Near Rings

In 1905, Dickson [6] showed that there exists a near field which is an algebraic structure similar to
a field except that the multiplication is not necessarily commutative and at least one distributive
law holds. Some years later, the concept of near rings were introduced. A near ring is a
generalization of a ring whose two axioms are omitted, namely, the addition is not necessarily
abelian and the multiplication distributes over the addition is applied on a left or a right side.

Definition 2.1. [9] A set R together with two operations of addition and multiplication is
called a near ring if the following conditions are satisfied:

(i) (R,+) is a group where the additive identity of (R,+) is denoted by 0,

(ii) (R, ·) is a semigroup, and

(iii) (a+ b) · c = a · c+ b · c for all a, b, c ∈ R.

For any a, b ∈ R, we may write ab instead of a · b.

Definition 2.2. [9] A near ring R is called a near ring with identity if there is an element
b ∈ R such that ab = a = ba for all a ∈ R; we say that b is the (multiplicative) identity of
the near ring R.

If R is a near ring, then it is always true that 0r = 0 for all r ∈ R because 0r = (r − r)r =
rr − rr = 0. However, the following example shows that r0 is not necessarily equal to 0.

Example 2.3. Let R = {0, 1} be the set with addition and multiplication given by the following
tables:

+ 0 1

0 0 1
1 1 0

· 0 1

0 0 0
1 1 1

Then (R,+, ·) is a near ring without identity which is not a ring because 1(1+ 0) ̸= 1 · 1+ 1 · 0.

Definition 2.4. [9] A near ring R is called a zero symmetric near ring if r0 = 0 for all
r ∈ R.

The near ring given in Example 2.3 is not a zero symmetric near ring because 1 · 0 = 1 ̸= 0.

Example 2.5. Let R = {0, 1, a, b} be the set with addition and multiplication given by the
following tables:

+ 0 1 a b

0 0 1 a b
1 1 0 b a
a a b 0 1
b b a 1 0

· 0 1 a b

0 0 0 0 0
1 0 1 a b
a 0 a a b
b 0 b 0 0

Then (R,+, ·) is a zero symmetric near ring with identity 1.

Definition 2.6. [9] A subset H of a near ring R is called an R-subgroup of R if

(i) (H,+) is a subgroup of (R,+),

(ii) HR ⊆ H where HR = {hr : h ∈ H and r ∈ R}, and

(iii) RH ⊆ H where RH = {rh : h ∈ H and r ∈ R}.

Moreover, if the conditions (i) and (ii) are satisfied, then H is called a right R-subgroup.
If the conditions (i) and (iii) are satisfied, then H is called a left R-subgroup.

Definition 2.7. [9] A subset I of a near ring R is called an ideal of R if
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(i) (I,+) is a normal subgroup of (R,+),

(ii) IR ⊆ I, and

(iii) r1 (r2 + k)− r1r2 ∈ I for all r1, r2 ∈ R and k ∈ I.

Nevertheless, if I satisfies the conditions (i) and (ii), then I is called a right ideal of R,
while I is called a left ideal of R if the conditions (i) and (iii) are satisfied.

In general, R-subgroups and ideals of near rings may not imply one another. However, if
(R,+) is an abelian group, then left R-subgroups and left ideals of R are identical. Although
R is a near ring such that (R,+) is abelian, right R-subgroups are not necessarily right ideals
and vice versa. This is because near rings may have only one distributive law. However, if R
is a zero symmetric near ring, then every ideal of R is an R-subgroup of R. In fact, if I is an
ideal of a zero symmetric near ring R, then RI ⊆ I because rk = r(0+ k)− r0 ∈ I for all r ∈ R
and k ∈ I.

Definition 2.8. [9] A proper ideal P of a near ring R is called a prime ideal of R if for all
a, b ∈ R, aRb ⊆ P implies that a ∈ P or b ∈ P .

Example 2.9. Consider the set R = {0, x, y, z} with addition and multiplication given by the
following tables:

+ 0 x y z

0 0 x y z
x x 0 z y
y y z 0 x
z z y x 0

· 0 x y z

0 0 0 0 0
x 0 x y z
y 0 0 0 0
z 0 x y z

Then R is a near ring, see [8]. Moreover, one can notice that all ideals of R are {0}, {0, x}, {0, y}
and {0, z}. In addition, {0, y} is the only prime ideal of R. The ideals {0}, {0, x} and {0, z} are
not prime ideals because yRy = {0} which is a subset of {0}, {0, x} and {0, z} but y /∈ {0}, y /∈
{0, x} and y /∈ {0, z}.

2.2 Modules over Near Rings

We know that rings are special cases of modules over rings. It is natural to introduce the notion
of modules over near rings which are generalization of near rings. It turns out that modules
over near rings also are generalization of modules over rings.

Definition 2.10. [9] Let R be a near ring and (M,+) a group. Then M is called a module
over a near ring R (or an R-module) if there exists a scalar multiplication · : R×M → M
such that for all r1, r2 ∈ R and m ∈ M ,

(i) (r1 + r2) ·m = r1 ·m+ r2 ·m, and

(ii) (r1r2) ·m = r1 (r2 ·m).

For any r ∈ R and m ∈ M , we may write rm instead of r ·m. It is obvious that every near
ring is a module over itself.

Example 2.11. Let (R = {0, 1},+, ·) be the near ring which is not a ring given in Example 2.3
and M = {0, a} be the set with addition + on M and scalar multiplication ⊙ : R ×M → M
given by the following tables:

+ 0 a

0 0 a
a a 0

⊙ 0 a

0 0 a
1 0 a

Then M is a module over the near ring R.

Proceedings of AMM 2017 ALG-05-3



Definition 2.12. [9] Let R be a near ring. A subgroup N of an R-module M is called an
R-submodule of M if rn ∈ N for all r ∈ R and n ∈ N .

Definition 2.13. [9] Let R be a near ring. A normal subgroup N of an R-module M is called
an R-ideal of M if r (m+ n)− rm ∈ N for all r ∈ R, m ∈ M and n ∈ N .

Let R be a near ring. Consider M = R as an R-module. Then R-ideals of M are the same
as left ideals of R and R-submodules of M are left R-subgroups of R. The following examples
show that R-submodules and R-ideals do not imply each other.

Example 2.14. Let R be the near ring given in Example 2.3. We consider M = R as an R-
module. Then {0} is anR-ideal ofM but {0} is not anR-submodule ofM because 1·0 = 1 /∈ {0}.

Example 2.15. Let R be the near ring given in Example 2.5. Let M = R be an R-module.
Then all R-submodules of M are {0}, {0, a}, {0, b} and M . Moreover, all R-ideals of M are
{0}, {0, b} and M . Note that {0, a} is not an R-ideal because a(b+ a)− ab = a(1)− b = a+ b =
1 /∈ {0, a}. Thus {0, a} is an R-submodule but not an R-ideal of M .

The next proposition provides the condition that makes each R-ideal be an R-submodule.

Proposition 2.16. If R is a zero symmetric near ring, then every R-ideal of an R-module M
is an R-submodule of M .

Proof. Assume that R is a zero symmetric near ring. Let N be an R-ideal of an R-module
M . Then N is a normal subgroup of M . Next, we show that rn ∈ N for all r ∈ R and
n ∈ N . Let r ∈ R and n ∈ N . Since R is a zero symmetric near ring, r0 = 0. And we
have rn = r(0 + n) − r0 ∈ N because N is an R-ideal of M and n ∈ N . Therefore, N is an
R-submodule of M .

The previous proposition shows that every R-ideal is an R-submodule when R is a zero
symmetric near ring. However, R-submodules are not necessarily R-ideals even R is a zero
symmetric near ring. For example, see Example 2.15.

It is known that the intersection of submodules of modules over rings is a submodule. Next,
we consider the intersection of R-submodules as well as the intersection of R-ideals of modules
over near rings.

Proposition 2.17. Let N and K be R-submodules of an R-module M . Then N ∩ K is an
R-submodule of M .

Proof. The proof is straightforward.

Proposition 2.18. Let N and K be R-ideals of an R-module M . Then N ∩K is an R-ideal
of M .

Proof. Since N and K are R-ideals of M , we obtain that N and K are normal subgroups
of M so that N ∩ K is a normal subgroup of M . Let r ∈ R,m ∈ M and n ∈ N ∩ K. Then
n ∈ N and n ∈ K. Since N and K are R-ideals of M , it follows that r(m+ n)− rm ∈ N and
r(m+n)− rm ∈ K. That is r(m+n)− rm ∈ N ∩K. Therefore, N ∩K is an R-ideal of M .

One can see from the definitions of R-submodules and R-ideals that R-ideals are normal
subgroups of R-modules but R-submodules are not necessary. Consequently, these allow us to
define quotient modules over near rings by using R-ideals.

Proposition 2.19. Let N be an R-ideal of an R-module M . Set M/N = {m +N : m ∈ M}.
Define the addition + on M/N and the scalar multiplication · by

(m+N) + (n+N) = (m+ n) +N and r · (m+N) = rm+N

for all r ∈ R and m,n ∈ M . Then (M/N,+, ·) is an R-module and called the quotient module
over a near ring.
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Proof. Since N is an R-ideal of M , it follows that (N,+) is a normal subgroup of (M,+).
Thus, (M/N,+) is a group. Now, we show that the scalar multiplication is well-defined. Let
x, y ∈ M and r ∈ R. Assume that x + N = y + N . Then −y + x ∈ N and thus rx − ry =
r(y + (−y + x)) − ry ∈ N because N is an R-ideal of M . Since N is a normal subgroup of
M and rx − ry ∈ N , it follows that −ry + rx = −ry + (rx − ry) + ry ∈ N . Hence the scalar
multiplication is well-defined. Next, we show that (r1 + r2) (x+N) = r1 (x+N) + r2 (x+N)
and (r1r2) (x+N) = r1 (r2 (x+N)) for all r1, r2 ∈ R. Let r1, r2 ∈ R. First, (r1 + r2) (x+N) =
(r1 + r2)x+N = (r1x+ r2x) +N = (r1x+N) + (r2x+N) = r1 (x+N) + r2 (x+N). Finally,
(r1r2) (x+N) = (r1r2)x + N = r1(r2x) + N = r1(r2x + N) = r1 (r2 (x+N)). Therefore,
(M/N,+, ·) is an R-module.

2.3 2-Absorbing R-Ideals

Prime submodules of modules over commutative rings with identities were introduced by Dauns
[5]. He defined a prime submodule N of a module M over a commutative ring R with identity
to be a proper submodule N of M and if rm ∈ N implies rM ⊆ N or m ∈ N for all r ∈ R
and m ∈ M . Recently, prime submodules of modules over rings were developed to 2-absorbing
submodules of modules over rings, see [4]. Moreover, Booth and Groenewald extended, in [2],
prime ideals of near rings to prime R-ideals of modules over near rings. In this part, we extend
the idea of prime ideals of near rings and prime R-ideals of modules over near rings to 2-
absorbing ideals of near rings and 2-absorbing R-ideals of modules over near rings, respectively.
In addition, some basic results of these are provided at the end.

Definition 2.20. [2] Let R be a near ring and N be a proper R-ideal of an R-module M .
Then N is called a prime R-ideal of M if rRm ⊆ N implies rM ⊆ N or m ∈ N for all r ∈ R
and m ∈ M .

Example 2.21. Recall from Example 2.14 that {0} is the only proper R-ideal of M . And it is
easy to check that {0} is the only prime R-ideal of M .

Example 2.22. Recall from Example 2.15 that {0} and {0, b} are the only proper R-ideals of
M . One can check that {0, b} is the only prime R-ideal of M . Note that {0} is not a prime
R-ideal of M because b · b = 0 but b /∈ {0}.

Next, we give the definitions of 2-absorbing ideals of near rings and 2-absorbing R-ideals of
modules over near rings.

Definition 2.23. Let P be a proper ideal of a near ring R. Then P is called a 2-absorbing
ideal of R if aRbRc ⊆ P implies ab ∈ P or bc ∈ P or ac ∈ P for all a, b, c ∈ R.

Definition 2.24. Let R be a near ring and N be a proper R-ideal of an R-module M . Then N
is called a 2-absorbing R-ideal of M if aRbRm ⊆ N implies abM ⊆ N or am ∈ N or bm ∈ N
for all a, b ∈ R and m ∈ M .

Badawi introduced, in [1], 2-absorbing ideals of rings and showed that every prime ideal of
a ring is a 2-absorbing ideal. Later, Darani and Soheilnia provided the notion of 2-absorbing
submodules of modules over rings and proved that every prime submodule of a module over a
ring is a 2-absorbing submodule, see [4]. Consequently, we expect to obtain the similar result
in term of “2-absorbing”. Anyhow, the following result is needed.

Proposition 2.25. Let R be a near ring and N be a prime R-ideal of an R-module M . If
aRbRm ⊆ N and am /∈ N, then bM ⊆ N for all a, b ∈ R and m ∈ M .

Proof. Let a, b ∈ R and m ∈ M . Assume that aRbRm ⊆ N and am /∈ N . First, we show that
bRm ⊆ N . Let r ∈ R. Then aR(brm) ⊆ aR(bRm) ⊆ N . Since N is a prime R-ideal, aM ⊆ N
or brm ∈ N . Then brm ∈ N because am /∈ N . That is bRm ⊆ N . Since N is a prime R-ideal
and am /∈ N , it follows that m /∈ N so that bM ⊆ N .

Proceedings of AMM 2017 ALG-05-5



Proposition 2.26. If N is a prime R-ideal of an R-module M , then N is a 2-absorbing R-ideal
of M .

Proof. Assume that N is a prime R-ideal of an R-module M . Let a, b ∈ R and m ∈ M . Assume
that aRbRm ⊆ N but am /∈ N . Thus bM ⊆ N by Proposition 2.25. Then bm ∈ N and
abM ⊆ N . Hence N is a 2-absorbing R-ideal of M .

Proposition 2.26 guarantees that every prime R-ideal is a 2-absorbing R-ideal. But the
converse does not necessarily hold. Example 2.22 provides that {0} is not a prime R-ideal of
M . However, {0} is a 2-absorbing R-ideal of M . To see this, let x, y, z ∈ R. Assume that
xRyRz = {0}. If x = 0 or y = 0 or z = 0, then xy = 0 or xz = 0 or yz = 0 because R is a zero
symmetric near ring. Next, Suppose that each of x, y and z is not zero. There are 2 cases to be
considered:

(i) at least two of x, y and z are 1, and
(ii) at most one of x, y and z are 1.

First, we consider Case(i). Without loss of generality, it suffices to assume that x and y are 1. It
follows that 1R1Rz ̸= {0} which is a contradiction. Thus Case(i) does not occur. Next, Case(ii)
is considered. There are 3 possible choices of xRyRz, namely, bRyRz, xRbRz, or xRyRb. We
obtain from the multiplication table in Example 2.5 that xRyRb ̸= {0} which is absurd. If
{0} = xRyRz = bRyRz, then by = 0. Or, if {0} = xRyRz = xRbRz, then bz = 0. This shows
that whenever xRyRz = {0}, then xy = 0 or xz = 0 or yz = 0. Therefore, {0} is a 2-absorbing
R-ideal of M .

3 Main Results

In this section, some properties of prime R-ideals and 2-absorbing R-ideals are presented. The
first part is regarded intersections of prime R-ideals as well as relationships between prime (2-
absorbing) R-ideals of an R-module and prime (2-absorbing) R-ideals of its quotient module.
The other part is considered results on decomposable near rings.

In 2011, Darani and Soheilnia showed in [4] that the intersection of each pair of prime
submodules of modules over rings is a 2-absorbing submodule. It is reasonable to extend this
result to the intersection of each pair of prime R-ideals of modules over near rings.

Theorem 3.1. The intersection of each pair of prime R-ideals of an R-module M is a 2-
absorbing R-ideal of M .

Proof. Let N and K be two prime R-ideals of M . If N = K, then N ∩K is a prime R-ideal
of M so that N ∩K is a 2-absorbing R-ideal of M . Assume that N and K are distinct. Since
N and K are proper R-ideals of M , it follows that N ∩K is a proper R-ideal of M . Next, let
a, b ∈ R and m ∈ M be such that aRbRm ⊆ N ∩K but am /∈ N ∩K and abM * N ∩K. Then,
we can conclude that (a) am /∈ N or am /∈ K, and (b) abM * N or abM * K. These reach to
4 cases:

(i) am /∈ N and abM * N
(ii) am /∈ N and abM * K
(iii) am /∈ K and abM * N
(iv) am /∈ K and abM * K.

First, we consider Case(i). Since aRbRm ⊆ N∩K ⊆ N and am /∈ N , it follows from Proposition
2.25 that bM ⊆ N . This is a contradiction because abM * N . Hence Case(i) does not occur.
Similarly, Case(iv) is not possible.

Next, Case(ii) is considered. Again, we obtain that bM ⊆ N and then bm ∈ N . Let r ∈ R.
Since aRbRm ⊆ N ∩ K ⊆ K, it follows that aR(brm) ⊆ aR(bRm) ⊆ K. Hence aM ⊆ K or
brm ∈ K because K is a prime R-ideal of M . If aM ⊆ K, then abM ⊆ aM ⊆ K contradicts
abM * K. Thus brm ∈ K. That is bRm ⊆ K. Since K is a prime R-ideal, bM ⊆ K or m ∈ K.
If bM ⊆ K, then abM ⊆ K leading to the same contradiction. Therefore, m ∈ K and then
bm ∈ K. Hence bm ∈ N ∩K.

The proof of Case(iii) is similar to that of Case(ii).
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Therefore, the intersection of each pair of prime R-ideals of M is a 2-absorbing R-ideal
of M .

Next proposition shows the results of the intersection of an R-ideal and a prime (2-absorbing)
R-ideal.

Proposition 3.2. Let N and K be R-ideals of an R-module M with K * N .

(1) If N is a prime R-ideal of M , then K ∩N is a prime R-ideal of K; and

(2) If N is a 2-absorbing R-ideal of M , then K ∩N is a 2-absorbing R-ideal of K.

Proof. We proof only (2) because the proof of (1) can be obtained similarly. Since N,K are
R-ideals of M and K * N , it follows that K ∩N is a proper R-ideal of K. Assume that N is a
2-absorbing R-ideal of M . Let a, b ∈ R and x ∈ K be such that aRbRx ⊆ K∩N . Since K ia an
R-ideal of M , we obtain that abK ⊆ K and ax, bx ∈ K. Moreover, since aRbRx ⊆ K ∩N ⊆ N
and N is a 2-absorbing R-ideal of M , it follows that abM ⊆ N or ax ∈ N or bx ∈ N . Thus
abK ⊆ abK ∩ abM ⊆ K ∩N or ax ∈ K ∩N or bx ∈ K ∩N . Therefore, K ∩N is a 2-absorbing
R-ideal of K.

Next, we aim to consider prime R-ideals and 2-absorbing R-ideals of quotient modules over
near rings.

Theorem 3.3. Let N and K be R-ideals of an R-module M with K ⊆ N . Then

(1) N is a prime R-ideal of M if and only if N/K is a prime R-ideal of M/K; and

(2) N is a 2-absorbing R-ideal of M if and only if N/K is a 2-absorbing R-ideal of M/K.

Proof. It suffices to proof only (2). First, assume that N is a 2-absorbing R-ideal of M . Then
N/K is a proper R-ideal ofM/K. Let a, b ∈ R andm ∈ M be such that aRbR (m+K) ⊆ N/K.
Let s, t ∈ R. Thus asbtm + K = asbt (m+K) ∈ aRbR (m+K) ⊆ N/K. Then there exists
n ∈ N such that asbtm + K = n + K so that −n + asbtm ∈ K ⊆ N and then asbtm ∈ N .
This shows that aRbRm ⊆ N . As a result, am ∈ N or bm ∈ N or abM ⊆ N because
N is a 2-absorbing R-ideal of M . Therefore, a (m+K) ∈ N/K or b (m+K) ∈ N/K or
ab(M/K) ⊆ N/K. Hence N/K is a 2-absorbing R-ideal of M/K.

Conversely, assume that N/K is a 2-absorbing R-ideal of M/K. Then N is a proper R-ideal
of M . Let a, b ∈ R and m ∈ M be such that aRbRm ⊆ N . Then aRbR (m+K) ⊆ N/K. Since
N/K is a 2-absorbing R-ideal of M/K, we obtain that a (m+K) ∈ N/K or b (m+K) ∈ N/K
or ab(M/K) ⊆ N/K. That is am ∈ N or bm ∈ N or abM ⊆ N . This implies that N is a
2-absorbing R-ideal of M .

Since a near ring R is also an R-module, 2-absorbing ideals of a near ring R are special
cases of 2-absorbing R-ideals of the R-module R. Then all properties of 2-absorbing R-ideals
of R-modules in this paper can be applied to 2-absorbing R-ideals of the near ring R. For
example, we also obtain that “The intersection of each pair of prime ideals of a near ring R is
a 2-absorbing ideal of R ”as a corollary of Theorem 3.1.

In 2015, Chinwarakorn and Pianskool [3] introduced almost generalized 2-absorbing ideals of
commutative rings with identities which is a generalization of 2-absorbing ideals of commutative
rings with identities and investigated some properties of them on decomposable rings. This leads
us to study some properties of 2-absorbing R-ideals of decomposable near rings.

Definition 3.4. A near ring R is said to be a decomposable near ring if it is a product of
nonzero near rings equipped by componentwise addition and multiplication.

Example 3.5. Let R1 = ({0, 1},+, ·) and R2 = ({0, 1, a, b},+, ·) be the near rings given in
Example 2.3 and Example 2.5, respectively. Then R1 ×R2 is a decomposable near ring.
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Let R = R1 × R2 × · · · × Rn be a decomposable near ring and let Mi be an Ri-module
for all i ∈ {1, 2, . . . , n}. It is clear that the product of M1,M2, . . . ,Mn is an R-module, i.e.,
M1 ×M2 × · · · ×Mn is an R-module.

Proposition 3.6. Let Ni be an Ri-ideal of an Ri-module Mi for all i ∈ {1, 2, . . . , n}. Then
N1×N2×· · ·×Nn is an R-ideal of M where R = R1×R2×· · ·×Rn and M = M1×M2×· · ·×Mn.

Proof. The proof is straightforward.

Next, some properties of 2-absorbing R-ideals on certain decomposable near rings are stud-
ied.

Lemma 3.7. Let M1 be an R1-module, M2 be an R2-module, R = R1×R2 and M = M1×M2.
Then

(1) N1 is a 2-absorbing (prime) R1-ideal of M1 if and only if N1×M2 is a 2-absorbing (prime)
R-ideal of M ; and

(2) N2 is a 2-absorbing (prime) R2-ideal of M2 if and only if M1×N2 is a 2-absorbing (prime)
R-ideal of M .

Proof. It suffices to prove only (1). First, assume that N1 is a 2-absorbing R1-ideal of M1.
Suppose that (a, b)R(c, d)R(m1,m2) ⊆ N1 × M2 where (a, b), (c, d) ∈ R and (m1,m2) ∈ M .
Then (aR1cR1m1, bR2dR2m2) = (a, b)R(c, d)R(m1,m2) ⊆ N1 ×M2, i.e., aR1cR1m1 ⊆ N1 and
bR2dR2m2 ⊆ M2. Since N1 is a 2-absorbing R1-ideal of M1, it follows that acM1 ⊆ N1 or
am1 ∈ N1 or cm1 ∈ N1. That is (a, b)(c, d)M = (acM1, bdM2) ⊆ N1 ×M2 or (a, b)(m1,m2) =
(am1, bm2) ∈ N1 × M2 or (c, d)(m1,m2) = (cm1, dm2) ∈ N1 × M2. Therefore, N1 × M2 is a
2-absorbing R-ideal of M .

Conversely, assume that N1×M2 is a 2-absorbing R-ideal of M . Let a, b ∈ R1 and m1 ∈ M1.
Assume that aR1bR1m1 ⊆ N1. Let x, y ∈ R2 and m2 ∈ M2. Then (a, x)R(b, y)R(m1,m2) =
(aR1bR1m1, xR2yR2m2) ⊆ N1 ×M2. Since N1 ×M2 is a 2-absorbing R-ideal of M , it follows
that (a, x)(b, y)M ⊆ N1 × M2 or (a, x)(m1,m2) ∈ N1 × M2 or (b, y)(m1,m2) ∈ N1 × M2.
Then (abM1, xyM2) = (a, x)(b, y)M ⊆ N1 ×M2 or (am1, xm2) = (a, x)(m1,m2) ∈ N1 ×M2 or
(bm1, ym2) = (b, y)(m1,m2) ∈ N1 ×M2, i.e., abM1 ⊆ N1 or am1 ∈ N1 or bm1 ∈ N1. Therefore,
N1 is a 2-absorbing R1-ideal of M1.

Theorem 3.8. Let R = R1 ×R2 × · · · ×Rn be a decomposable near ring, Mi be an Ri-module,
and Ni be an Ri-ideal of Mi for all i ∈ {1, 2, . . . , n}. Then Ni is a 2-absorbing (prime) Ri-ideal
of Mi if and only if M1 × · · · ×Mi−1 ×Ni ×Mi+1 × · · · ×Mn is a 2-absorbing (prime) R-ideal
of M1 × · · · ×Mn for each i ∈ {1, 2, . . . , n}.

Proof. The result follows by applying Lemma 3.7.

Recall that a near ring R is a module over itself. Moreover, if I is a prime (2-absorbing)
ideal of a near ring R, then I is a prime (2-absorbing) R-ideal of the R-module R and vice
versa.

Corollary 3.9. Let R = R1 × R2 × · · · × Rn be a decomposable near ring and Ii be an ideal
of Ri for all i ∈ {1, 2, . . . , n}. Then Ii is a 2-absorbing (prime) ideal of Ri if and only if
R1×· · ·×Ri−1×Ii×Ri+1×· · ·×Rn is a 2-absorbing (prime) ideal of R for each i ∈ {1, 2, . . . , n}.

Next theorem shows a condition that makes N1 × N2 be a 2-absorbing (R1 × R2)-ideal of
an (R1 ×R2)-module M1 ×M2 where each Ni is a proper Ri-ideal of Mi.

Theorem 3.10. If N1 is a prime R1-ideal of an R1-module M1 and N2 is a prime R2-ideal of
an R2-module M2, then N1×N2 is a 2-absorbing R-ideal of the R-module M where R = R1×R2

and M = M1 ×M2.
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Proof. Assume that N1 is a prime R1-ideal of an R1-module M1 and N2 is a prime R2-ideal of
an R2-module M2. Then N1 × N2 is a proper R-ideal of M . Let (a, b), (c, d) ∈ R1 × R2 and
(m1,m2) ∈ M1×M2. Assume that (a, b)R(c, d)R(m1,m2) ⊆ N1×N2 but (a, b)(c, d)M * N1×N2

and (a, b)(m1,m2) /∈ N1 ×N2. Then we can conclude that (a) am1 /∈ N1 or am2 /∈ N2, and (b)
acM1 * N1 or bdM2 * N2. There are 4 cases to be considered:

(i) am1 /∈ N1 and acM1 * N1

(ii) am2 /∈ N2 and bdM2 * N2

(iii) am1 /∈ N1 and bdM2 * N2

(iv) am2 /∈ N2 and acM1 * N1.
We claim (c, d)(m1,m2) ∈ N1×N2. First, we consider Case(i). Note that aR1cR1m1 ⊆ N1 and
bR2dR2m2 ⊆ N2 because (aR1cR1m1, bR2dR2m2) = (a, b)R(c, d)R(m1,m2) ⊆ N1 × N2. Since
N1 is a prime R1-ideal of M1 and am1 /∈ N1, we obtain from Proposition 2.25 that cM1 ⊆ N1

so that acM1 ⊆ N1 which is a contradiction. Then Case(i) is not possible. In addition, Case(ii)
is absurd.

Next, Case (iii) is considered. Similarly, cM1 ⊆ N1. Thus cm1 ∈ N1. Moreover, bR2dR2m2 ⊆
N2. Let r ∈ R2. Then bR2drm2 ⊆ N2. Since N2 is a prime R2-ideal of M2, we have bM2 ⊆ N2

or drm2 ∈ N2. If bM2 ⊆ N2, then bdM2 ⊆ bM2 ⊆ N2 contradicts bdM2 * N2. Then drm2 ∈ N2.
That is dR2m2 ⊆ N2. And again, since N2 is a prime R2-ideal of M2 and bdM2 * N2, we get
that m2 ∈ N2 so that dm2 ∈ N2. Therefore, (c, d)(m1,m2) = (cm1, dm2) ∈ N1 ×N2.

The proof of Case(iv) is similar to that of Case(iii). Hence N1×N2 is a 2-absorbing R-ideal
of M .

However, it is not necessary true that the product of prime R-ideals is a prime R-ideal. For
example, let N1 = {0} be the prime R1-ideal of M1 = {0, 1} and N2 = {0, b} be the prime R2-
ideal ofM2 = {0, 1, a, b} given in Example 2.21 and Example 2.22, respectively. Let R = R1×R2.
Then N1×N2 is not a prime R-ideal of M1×M2 because (0, a)R(1, b) ⊆ {(0, 0), (0, b)} = N1×N2

but (0, a), (1, b) /∈ N1 ×N2.
We obtain from Theorem 3.10 that I1 × I2 is a 2-absorbing ideal of R1 × R2 where I1 and

I2 are prime ideals of the near rings R1 and R2, respectively. Moreover, if R1 and R2 are zero
symmetric near rings, then the converse of Theorem 3.10 is true.

Theorem 3.11. Let R1 and R2 be zero symmetric near rings with identities, I1 and I2 be proper
ideals of R1 and R2, respectively. Then I1 is a prime ideal of R1 and I2 is a prime ideal of R2

if and only if I1 × I2 is a 2-absorbing ideal of R1 ×R2.

Proof. To prove the sufficient part, assume that I1 × I2 is a 2-absorbing ideal of R1 × R2. Let
a, b ∈ R1 and x, y ∈ R2. Suppose that aR1b ⊆ I1 and xR2y ⊆ I2. Then aR11R1b ⊆ I1 and
xy = x1y ∈ xR2y ⊆ I2. Since I2 is an ideal of R2 and xy ∈ I2, we obtain that xyR2 ⊆
I2. Moreover, R2xyR2 ⊆ RI2 ⊆ I2 because R2 is a zero symmetric near ring. Note that
(a, 1)R(1, xy)R(b, 1) = (aR11R1b, 1R2xyR21) ⊆ I1 × I2. Since I1 × I2 is a 2-absorbing ideal of
R1 × R2, it follows that (a, 1)(1, xy) ∈ I1 × I2 or (1, xy)(b, 1) ∈ I1 × I2 or (a, 1)(b, 1) ∈ I1 × I2,
i.e., (a, xy) ∈ I1 × I2 or (b, xy) ∈ I1 × I2 or (ab, 12) ∈ I1 × I2. But I2 is a proper ideal of R2 so
that (ab, 1) ∈ I1 × I2 is not possible. Hence (a, xy) ∈ I1 × I2 or (b, xy) ∈ I1 × I2. Thus a ∈ I1 or
b ∈ I1. Therefore, I1 is a 2-absorbing ideal of R1. Similarly, we obtain that I2 is a 2-absorbing
ideal of R2.

The last result provides a characterization of being a 2-absorbing ideal of the ideal I1×I2×I3
of a decomposable near ring where I1 is proper.

Theorem 3.12. Let R = R1 × R2 × R3 where R1, R2 and R3 are zero symmetric near rings
with identities, I1 be a proper ideal of R1, I2 and I3 be ideals of R2 and R3, respectively. Then
the following statements are equivalent.

(1) I1 × I2 × I3 is a 2-absorbing ideal of R.

(2) I1 is 2-absorbing ideal of R1, I2 = R2 and I3 = R3 or
I1, I2 are prime ideals and I3 = R3 or
I1, I3 are prime ideals and I2 = R2.
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Proof. First, assume that I := I1 × I2 × I3 is a 2-absorbing ideal of R. Then I is a nonempty
subset of R. Let (a, b, c) ∈ I. Note that (a, 1, 1)R(1, b, 1)R(1, 1, c) = (aR1, R2bR2, R3c) ⊆
I1 × I2 × I3 = I because I1, I2 and I3 are ideals of zero symmetric near rings. Since I is a
2-absorbing ideal of R, (a, 1, 1)(1, b, 1) ∈ I or (1, b, 1)(1, 1, c) ∈ I or (a, 1, 1)(1, 1, c) ∈ I, i.e.,
(a, b, 1) ∈ I or (1, b, c) ∈ I or (a, 1, c) ∈ I. Then I3 = R3 or I1 = R1 or I2 = R2. But I1 is a
proper ideal of R1, it follows that I3 = R3 or I2 = R2. This reaches to 3 cases:

(i) I2 = R2 and I3 = R3,
(ii) I2 ̸= R2 or I3 = R3,
(iii) I2 = R2 or I3 ̸= R3.

The first case leads to the result that I = I1 × (R2 × R3) where I1 is 2-absorbing ideal of
R1 by Corollary 3.9. Next, we proof the second case by showing that I1 and I2 are prime
ideals. Let a, b ∈ R1 and x, y ∈ R2. Assume that aR1b ⊆ I1 and xR2y ⊆ I2. Then
(a, 1, 1)R(1, xy, 1)R(b, 1, 1) = (aR1b,R2xyR2, R3) ⊆ I1 × I2 × I3 = I because I2 is an ideal
of the zero symmetric near ring R2. Since I ia a 2-absorbing ideal of R, (a, 1, 1)(1, xy, 1) ∈ I or
(1, xy, 1)(b, 1, 1) ∈ I or (a, 1, 1)(b, 1, 1) ∈ I, i.e., (a, xy, 1) ∈ I or (b, xy, 1) ∈ I or (ab, 1, 1) ∈ I.
Since I2 ̸= R2, it follows that (a, xy, 1) ∈ I or (b, xy, 1) ∈ I. That is a ∈ I1 or b ∈ I1. Therefore,
I1 is a prime ideal of R1. Similarly, we obtain that I2 is a prime ideal of R2. The proof of
Case(iii) is similar to that of Case(ii).

Conversely, if I = I1 ×R2 ×R3 and I1 is a 2-absorbing ideal of R1, then I is a 2-absorbing
ideal of R by Corollary 3.9 because R2 × R3 is a near ring. Consider Case(ii), since I1 and I2
are prime ideals, I1 × I2 is a 2-absorbing ideal by Theorem 3.11. It is easy to verify that I is a
2-absorbing ideal of R by Corollary 3.9 again. The last case is similar to the previous case.

By the results of Theorem 3.11 and Theorem 3.12, we can see that, in order to obtain these
results, being a zero symmetric near ring with identity is crucial.
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