2-Absorbing \boldsymbol{R}-ideals of modules over near rings

Sutida Patlertsin ${ }^{\dagger \ddagger}$ and Sajee Pianskool
Department of Mathematics and Computer Science, Faculty of Science
Chulalongkorn University, Bangkok 10330, Thailand

Abstract

It is known that rings and modules over rings are related algebraic structures. Moreover, near rings and modules over near rings are generalized algebraic structures of rings and modules over rings, respectively. In this paper, we introduce and study 2 -absorbing ideals of near rings and 2 -absorbing R-ideals of modules over near rings which are extended from prime ideals of near rings and prime R-ideals of modules over near rings, respectively.

Keywords: 2-absorbing ideals, 2-absorbing R-ideals, near rings, modules over near rings.
2010 MSC: Primary 16Y30; Secondary 16N60, 16Y99, 16N99.

1 Introduction

In 2007, Badawi [1] introduced the concept of 2-absorbing ideals of commutative rings with identity, which is a generalization of prime ideals, and investigated some properties. He defined a 2-absorbing ideal P of a commutative ring R with identity to be a proper ideal of R and if whenever $a, b, c \in R$ with $a b c \in P$, then $a b \in P$ or $b c \in P$ or $a c \in P$. In 2011, Darani and Soheilnia [4] introduced the concept of 2 -absorbing submodules of modules over commutative rings with identities. A proper submodule P of a module M over a commutative ring R with identity is said to be a 2-absorbing submodule of M if whenever $a, b \in R$ and $m \in M$ with $a b m \in P$, then $a b M \subseteq P$ or $a m \in P$ or $b m \in P$. One can see that 2 -absorbing submodules are generalization of prime submodules. Moreover, it is obvious that 2-absorbing ideals are special cases of 2-absorbing submodules.

It is known that a near ring is an algebraic structure similar to a ring. In 1991, Groenewald [7] introduced the notion of prime ideals of near rings. Moreover, Booth and Groenewald [2] extended prime ideals of near rings to prime R-ideals of modules over near rings.

In this paper, we aim to study the notion that generalizes prime R-ideals of modules over near rings in the same way as prime submodules of modules over rings were extended, called 2 -absorbing R-ideals. Furthermore, we investigate some properties of 2-absorbing R-ideals of decomposable modules over near rings.

2 Preliminaries

We collect definitions of near rings and modules over near rings as well as present some results which are used in this paper.

[^0]
2.1 Near Rings

In 1905, Dickson [6] showed that there exists a near field which is an algebraic structure similar to a field except that the multiplication is not necessarily commutative and at least one distributive law holds. Some years later, the concept of near rings were introduced. A near ring is a generalization of a ring whose two axioms are omitted, namely, the addition is not necessarily abelian and the multiplication distributes over the addition is applied on a left or a right side.

Definition 2.1. [9] A set R together with two operations of addition and multiplication is called a near ring if the following conditions are satisfied:
(i) $(R,+)$ is a group where the additive identity of $(R,+)$ is denoted by 0 ,
(ii) (R, \cdot) is a semigroup, and
(iii) $(a+b) \cdot c=a \cdot c+b \cdot c$ for all $a, b, c \in R$.

For any $a, b \in R$, we may write $a b$ instead of $a \cdot b$.
Definition 2.2. [9] A near ring R is called a near ring with identity if there is an element $b \in R$ such that $a b=a=b a$ for all $a \in R$; we say that b is the (multiplicative) identity of the near ring R.

If R is a near ring, then it is always true that $0 r=0$ for all $r \in R$ because $0 r=(r-r) r=$ $r r-r r=0$. However, the following example shows that $r 0$ is not necessarily equal to 0 .

Example 2.3. Let $R=\{0,1\}$ be the set with addition and multiplication given by the following tables:

$$
\begin{array}{c|ccc|cc}
+ & 0 & 1 & + & 0 & 1 \\
\hline 0 & 0 & 1 & 0 & 0 & 0 \\
1 & 1 & 0 & 1 & 1 & 1
\end{array}
$$

Then $(R,+, \cdot)$ is a near ring without identity which is not a ring because $1(1+0) \neq 1 \cdot 1+1 \cdot 0$.
Definition 2.4. [9] A near ring R is called a zero symmetric near ring if $r 0=0$ for all $r \in R$.

The near ring given in Example 2.3 is not a zero symmetric near ring because $1 \cdot 0=1 \neq 0$.
Example 2.5. Let $R=\{0,1, a, b\}$ be the set with addition and multiplication given by the following tables:

+	0	1	a	b
0	0	1	a	b
1	1	0	b	a
a	a	b	0	1
b	b	a	1	0

\cdot	0	1	a	b
0	0	0	0	0
1	0	1	a	b
a	0	a	a	b
b	0	b	0	0

Then $(R,+, \cdot)$ is a zero symmetric near ring with identity 1 .
Definition 2.6. [9] A subset H of a near ring R is called an R-subgroup of R if
(i) $(H,+)$ is a subgroup of $(R,+)$,
(ii) $H R \subseteq H$ where $H R=\{h r: h \in H$ and $r \in R\}$, and
(iii) $R H \subseteq H$ where $R H=\{r h: h \in H$ and $r \in R\}$.

Moreover, if the conditions (i) and (ii) are satisfied, then H is called a right R-subgroup. If the conditions (i) and (iii) are satisfied, then H is called a left R-subgroup.

Definition 2.7. [9] A subset I of a near ring R is called an ideal of R if
(i) $(I,+)$ is a normal subgroup of $(R,+)$,
(ii) $I R \subseteq I$, and
(iii) $r_{1}\left(r_{2}+k\right)-r_{1} r_{2} \in I$ for all $r_{1}, r_{2} \in R$ and $k \in I$.

Nevertheless, if I satisfies the conditions (i) and (ii), then I is called a right ideal of R, while I is called a left ideal of R if the conditions (i) and (iii) are satisfied.

In general, R-subgroups and ideals of near rings may not imply one another. However, if $(R,+)$ is an abelian group, then left R-subgroups and left ideals of R are identical. Although R is a near ring such that $(R,+)$ is abelian, right R-subgroups are not necessarily right ideals and vice versa. This is because near rings may have only one distributive law. However, if R is a zero symmetric near ring, then every ideal of R is an R-subgroup of R. In fact, if I is an ideal of a zero symmetric near ring R, then $R I \subseteq I$ because $r k=r(0+k)-r 0 \in I$ for all $r \in R$ and $k \in I$.

Definition 2.8. [9] A proper ideal P of a near ring R is called a prime ideal of R if for all $a, b \in R, a R b \subseteq P$ implies that $a \in P$ or $b \in P$.

Example 2.9. Consider the set $R=\{0, x, y, z\}$ with addition and multiplication given by the following tables:

+	0	x	y	z
0	0	x	y	z
x	x	0	z	y
y	y	z	0	x
z	z	y	x	0

\cdot	0	x	y	z
0	0	0	0	0
x	0	x	y	z
y	0	0	0	0
z	0	x	y	z

Then R is a near ring, see [8]. Moreover, one can notice that all ideals of R are $\{0\},\{0, x\},\{0, y\}$ and $\{0, z\}$. In addition, $\{0, y\}$ is the only prime ideal of R. The ideals $\{0\},\{0, x\}$ and $\{0, z\}$ are not prime ideals because $y R y=\{0\}$ which is a subset of $\{0\},\{0, x\}$ and $\{0, z\}$ but $y \notin\{0\}, y \notin$ $\{0, x\}$ and $y \notin\{0, z\}$.

2.2 Modules over Near Rings

We know that rings are special cases of modules over rings. It is natural to introduce the notion of modules over near rings which are generalization of near rings. It turns out that modules over near rings also are generalization of modules over rings.

Definition 2.10. [9] Let R be a near ring and $(M,+)$ a group. Then M is called a module over a near ring R (or an R-module) if there exists a scalar multiplication $\cdot: R \times M \rightarrow M$ such that for all $r_{1}, r_{2} \in R$ and $m \in M$,
(i) $\left(r_{1}+r_{2}\right) \cdot m=r_{1} \cdot m+r_{2} \cdot m$, and
(ii) $\left(r_{1} r_{2}\right) \cdot m=r_{1}\left(r_{2} \cdot m\right)$.

For any $r \in R$ and $m \in M$, we may write $r m$ instead of $r \cdot m$. It is obvious that every near ring is a module over itself.

Example 2.11. Let ($R=\{0,1\},+, \cdot)$ be the near ring which is not a ring given in Example 2.3 and $M=\{0, a\}$ be the set with addition + on M and scalar multiplication $\odot: R \times M \rightarrow M$ given by the following tables:

+	0	a
0	0	a
a	a	0

\odot	0	a
0	0	a
1	0	a

Then M is a module over the near ring R.

Definition 2.12. [9] Let R be a near ring. A subgroup N of an R-module M is called an R-submodule of M if $r n \in N$ for all $r \in R$ and $n \in N$.

Definition 2.13. [9] Let R be a near ring. A normal subgroup N of an R-module M is called an R-ideal of M if $r(m+n)-r m \in N$ for all $r \in R, m \in M$ and $n \in N$.

Let R be a near ring. Consider $M=R$ as an R-module. Then R-ideals of M are the same as left ideals of R and R-submodules of M are left R-subgroups of R. The following examples show that R-submodules and R-ideals do not imply each other.

Example 2.14. Let R be the near ring given in Example 2.3. We consider $M=R$ as an R module. Then $\{0\}$ is an R-ideal of M but $\{0\}$ is not an R-submodule of M because $1 \cdot 0=1 \notin\{0\}$.

Example 2.15. Let R be the near ring given in Example 2.5. Let $M=R$ be an R-module. Then all R-submodules of M are $\{0\},\{0, a\},\{0, b\}$ and M. Moreover, all R-ideals of M are $\{0\},\{0, b\}$ and M. Note that $\{0, a\}$ is not an R-ideal because $a(b+a)-a b=a(1)-b=a+b=$ $1 \notin\{0, a\}$. Thus $\{0, a\}$ is an R-submodule but not an R-ideal of M.

The next proposition provides the condition that makes each R-ideal be an R-submodule.
Proposition 2.16. If R is a zero symmetric near ring, then every R-ideal of an R-module M is an R-submodule of M.

Proof. Assume that R is a zero symmetric near ring. Let N be an R-ideal of an R-module M. Then N is a normal subgroup of M. Next, we show that $r n \in N$ for all $r \in R$ and $n \in N$. Let $r \in R$ and $n \in N$. Since R is a zero symmetric near ring, $r 0=0$. And we have $r n=r(0+n)-r 0 \in N$ because N is an R-ideal of M and $n \in N$. Therefore, N is an R-submodule of M.

The previous proposition shows that every R-ideal is an R-submodule when R is a zero symmetric near ring. However, R-submodules are not necessarily R-ideals even R is a zero symmetric near ring. For example, see Example 2.15.

It is known that the intersection of submodules of modules over rings is a submodule. Next, we consider the intersection of R-submodules as well as the intersection of R-ideals of modules over near rings.

Proposition 2.17. Let N and K be R-submodules of an R-module M. Then $N \cap K$ is an R-submodule of M.

Proof. The proof is straightforward.
Proposition 2.18. Let N and K be R-ideals of an R-module M. Then $N \cap K$ is an R-ideal of M.

Proof. Since N and K are R-ideals of M, we obtain that N and K are normal subgroups of M so that $N \cap K$ is a normal subgroup of M. Let $r \in R, m \in M$ and $n \in N \cap K$. Then $n \in N$ and $n \in K$. Since N and K are R-ideals of M, it follows that $r(m+n)-r m \in N$ and $r(m+n)-r m \in K$. That is $r(m+n)-r m \in N \cap K$. Therefore, $N \cap K$ is an R-ideal of M.

One can see from the definitions of R-submodules and R-ideals that R-ideals are normal subgroups of R-modules but R-submodules are not necessary. Consequently, these allow us to define quotient modules over near rings by using R-ideals.

Proposition 2.19. Let N be an R-ideal of an R-module M. Set $M / N=\{m+N: m \in M\}$. Define the addition + on M / N and the scalar multiplication \cdot by

$$
(m+N)+(n+N)=(m+n)+N \quad \text { and } \quad r \cdot(m+N)=r m+N
$$

for all $r \in R$ and $m, n \in M$. Then $(M / N,+, \cdot)$ is an R-module and called the quotient module over a near ring.

Proof. Since N is an R-ideal of M, it follows that $(N,+)$ is a normal subgroup of $(M,+)$. Thus, $(M / N,+)$ is a group. Now, we show that the scalar multiplication is well-defined. Let $x, y \in M$ and $r \in R$. Assume that $x+N=y+N$. Then $-y+x \in N$ and thus $r x-r y=$ $r(y+(-y+x))-r y \in N$ because N is an R-ideal of M. Since N is a normal subgroup of M and $r x-r y \in N$, it follows that $-r y+r x=-r y+(r x-r y)+r y \in N$. Hence the scalar multiplication is well-defined. Next, we show that $\left(r_{1}+r_{2}\right)(x+N)=r_{1}(x+N)+r_{2}(x+N)$ and $\left(r_{1} r_{2}\right)(x+N)=r_{1}\left(r_{2}(x+N)\right)$ for all $r_{1}, r_{2} \in R$. Let $r_{1}, r_{2} \in R$. First, $\left(r_{1}+r_{2}\right)(x+N)=$ $\left(r_{1}+r_{2}\right) x+N=\left(r_{1} x+r_{2} x\right)+N=\left(r_{1} x+N\right)+\left(r_{2} x+N\right)=r_{1}(x+N)+r_{2}(x+N)$. Finally, $\left(r_{1} r_{2}\right)(x+N)=\left(r_{1} r_{2}\right) x+N=r_{1}\left(r_{2} x\right)+N=r_{1}\left(r_{2} x+N\right)=r_{1}\left(r_{2}(x+N)\right)$. Therefore, $(M / N,+, \cdot)$ is an R-module.

2.3 2-Absorbing R-Ideals

Prime submodules of modules over commutative rings with identities were introduced by Dauns [5]. He defined a prime submodule N of a module M over a commutative ring R with identity to be a proper submodule N of M and if $r m \in N$ implies $r M \subseteq N$ or $m \in N$ for all $r \in R$ and $m \in M$. Recently, prime submodules of modules over rings were developed to 2-absorbing submodules of modules over rings, see [4]. Moreover, Booth and Groenewald extended, in [2], prime ideals of near rings to prime R-ideals of modules over near rings. In this part, we extend the idea of prime ideals of near rings and prime R-ideals of modules over near rings to 2 absorbing ideals of near rings and 2 -absorbing R-ideals of modules over near rings, respectively. In addition, some basic results of these are provided at the end.

Definition 2.20. [2] Let R be a near ring and N be a proper R-ideal of an R-module M. Then N is called a prime R-ideal of M if $r R \subseteq \subseteq$ implies $r M \subseteq N$ or $m \in N$ for all $r \in R$ and $m \in M$.

Example 2.21. Recall from Example 2.14 that $\{0\}$ is the only proper R-ideal of M. And it is easy to check that $\{0\}$ is the only prime R-ideal of M.

Example 2.22. Recall from Example 2.15 that $\{0\}$ and $\{0, b\}$ are the only proper R-ideals of M. One can check that $\{0, b\}$ is the only prime R-ideal of M. Note that $\{0\}$ is not a prime R-ideal of M because $b \cdot b=0$ but $b \notin\{0\}$.

Next, we give the definitions of 2-absorbing ideals of near rings and 2-absorbing R-ideals of modules over near rings.

Definition 2.23. Let P be a proper ideal of a near ring R. Then P is called a $\mathbf{2}$-absorbing ideal of R if $a R b R c \subseteq P$ implies $a b \in P$ or $b c \in P$ or $a c \in P$ for all $a, b, c \in R$.

Definition 2.24. Let R be a near ring and N be a proper R-ideal of an R-module M. Then N is called a 2 -absorbing R-ideal of M if $a R b R m \subseteq N$ implies $a b M \subseteq N$ or $a m \in N$ or $b m \in N$ for all $a, b \in R$ and $m \in M$.

Badawi introduced, in [1], 2-absorbing ideals of rings and showed that every prime ideal of a ring is a 2 -absorbing ideal. Later, Darani and Soheilnia provided the notion of 2 -absorbing submodules of modules over rings and proved that every prime submodule of a module over a ring is a 2 -absorbing submodule, see [4]. Consequently, we expect to obtain the similar result in term of "2-absorbing". Anyhow, the following result is needed.

Proposition 2.25. Let R be a near ring and N be a prime R-ideal of an R-module M. If $a R b R m \subseteq N$ and am $\notin N$, then $b M \subseteq N$ for all $a, b \in R$ and $m \in M$.

Proof. Let $a, b \in R$ and $m \in M$. Assume that $a R b R m \subseteq N$ and $a m \notin N$. First, we show that $b R m \subseteq N$. Let $r \in R$. Then $a R(b r m) \subseteq a R(b R m) \subseteq N$. Since N is a prime R-ideal, $a M \subseteq N$ or $b r m \in N$. Then $b r m \in N$ because $a m \notin N$. That is $b R m \subseteq N$. Since N is a prime R-ideal and $a m \notin N$, it follows that $m \notin N$ so that $b M \subseteq N$.

Proposition 2.26. If N is a prime R-ideal of an R-module M, then N is a 2-absorbing R-ideal of M.

Proof. Assume that N is a prime R-ideal of an R-module M. Let $a, b \in R$ and $m \in M$. Assume that $a R b R m \subseteq N$ but $a m \notin N$. Thus $b M \subseteq N$ by Proposition 2.25. Then $b m \in N$ and $a b M \subseteq N$. Hence N is a 2 -absorbing R-ideal of M.

Proposition 2.26 guarantees that every prime R-ideal is a 2 -absorbing R-ideal. But the converse does not necessarily hold. Example 2.22 provides that $\{0\}$ is not a prime R-ideal of M. However, $\{0\}$ is a 2 -absorbing R-ideal of M. To see this, let $x, y, z \in R$. Assume that $x R y R z=\{0\}$. If $x=0$ or $y=0$ or $z=0$, then $x y=0$ or $x z=0$ or $y z=0$ because R is a zero symmetric near ring. Next, Suppose that each of x, y and z is not zero. There are 2 cases to be considered:
(i) at least two of x, y and z are 1 , and
(ii) at most one of x, y and z are 1 .

First, we consider Case(i). Without loss of generality, it suffices to assume that x and y are 1. It follows that $1 R 1 R z \neq\{0\}$ which is a contradiction. Thus Case(i) does not occur. Next, Case(ii) is considered. There are 3 possible choices of $x R y R z$, namely, $b R y R z, x R b R z$, or $x R y R b$. We obtain from the multiplication table in Example 2.5 that $x R y R b \neq\{0\}$ which is absurd. If $\{0\}=x R y R z=b R y R z$, then $b y=0$. Or, if $\{0\}=x R y R z=x R b R z$, then $b z=0$. This shows that whenever $x R y R z=\{0\}$, then $x y=0$ or $x z=0$ or $y z=0$. Therefore, $\{0\}$ is a 2 -absorbing R-ideal of M.

3 Main Results

In this section, some properties of prime R-ideals and 2 -absorbing R-ideals are presented. The first part is regarded intersections of prime R-ideals as well as relationships between prime (2absorbing) R-ideals of an R-module and prime (2 -absorbing) R-ideals of its quotient module. The other part is considered results on decomposable near rings.

In 2011, Darani and Soheilnia showed in [4] that the intersection of each pair of prime submodules of modules over rings is a 2 -absorbing submodule. It is reasonable to extend this result to the intersection of each pair of prime R-ideals of modules over near rings.

Theorem 3.1. The intersection of each pair of prime R-ideals of an R-module M is a 2absorbing R-ideal of M.

Proof. Let N and K be two prime R-ideals of M. If $N=K$, then $N \cap K$ is a prime R-ideal of M so that $N \cap K$ is a 2 -absorbing R-ideal of M. Assume that N and K are distinct. Since N and K are proper R-ideals of M, it follows that $N \cap K$ is a proper R-ideal of M. Next, let $a, b \in R$ and $m \in M$ be such that $a R b R m \subseteq N \cap K$ but $a m \notin N \cap K$ and $a b M \nsubseteq N \cap K$. Then, we can conclude that (a) $a m \notin N$ or $a m \notin K$, and (b) $a b M \nsubseteq N$ or $a b M \nsubseteq K$. These reach to 4 cases:
(i) $a m \notin N$ and $a b M \nsubseteq N$
(ii) $a m \notin N$ and $a b M \nsubseteq K$
(iii) $a m \notin K$ and $a b M \nsubseteq N$
(iv) $a m \notin K$ and $a b M \nsubseteq K$.

First, we consider Case(i). Since $a R b R m \subseteq N \cap K \subseteq N$ and $a m \notin N$, it follows from Proposition 2.25 that $b M \subseteq N$. This is a contradiction because $a b M \nsubseteq N$. Hence Case(i) does not occur. Similarly, Case(iv) is not possible.

Next, Case(ii) is considered. Again, we obtain that $b M \subseteq N$ and then $b m \in N$. Let $r \in R$. Since $a R b R m \subseteq N \cap K \subseteq K$, it follows that $a R(b r m) \subseteq a R(b R m) \subseteq K$. Hence $a M \subseteq K$ or brm $\in K$ because K is a prime R-ideal of M. If $a M \subseteq K$, then $a b M \subseteq a M \subseteq K$ contradicts $a b M \nsubseteq K$. Thus $b r m \in K$. That is $b R m \subseteq K$. Since K is a prime R-ideal, $b M \subseteq K$ or $m \in K$. If $b M \subseteq K$, then $a b M \subseteq K$ leading to the same contradiction. Therefore, $m \in K$ and then $b m \in K$. Hence $b m \in N \cap K$.

The proof of Case(iii) is similar to that of Case(ii).

Therefore, the intersection of each pair of prime R-ideals of M is a 2-absorbing R-ideal of M.

Next proposition shows the results of the intersection of an R-ideal and a prime (2-absorbing) R-ideal.

Proposition 3.2. Let N and K be R-ideals of an R-module M with $K \nsubseteq N$.
(1) If N is a prime R-ideal of M, then $K \cap N$ is a prime R-ideal of K; and
(2) If N is a 2-absorbing R-ideal of M, then $K \cap N$ is a 2-absorbing R-ideal of K.

Proof. We proof only (2) because the proof of (1) can be obtained similarly. Since N, K are R-ideals of M and $K \nsubseteq N$, it follows that $K \cap N$ is a proper R-ideal of K. Assume that N is a 2-absorbing R-ideal of M. Let $a, b \in R$ and $x \in K$ be such that $a R b R x \subseteq K \cap N$. Since K ia an R-ideal of M, we obtain that $a b K \subseteq K$ and $a x, b x \in K$. Moreover, since $a R b R x \subseteq K \cap N \subseteq N$ and N is a 2 -absorbing R-ideal of M, it follows that $a b M \subseteq N$ or $a x \in N$ or $b x \in N$. Thus $a b K \subseteq a b K \cap a b M \subseteq K \cap N$ or $a x \in K \cap N$ or $b x \in K \cap N$. Therefore, $K \cap N$ is a 2-absorbing R-ideal of K.

Next, we aim to consider prime R-ideals and 2 -absorbing R-ideals of quotient modules over near rings.

Theorem 3.3. Let N and K be R-ideals of an R-module M with $K \subseteq N$. Then
(1) N is a prime R-ideal of M if and only if N / K is a prime R-ideal of M / K; and
(2) N is a 2-absorbing R-ideal of M if and only if N / K is a 2-absorbing R-ideal of M / K.

Proof. It suffices to proof only (2). First, assume that N is a 2 -absorbing R-ideal of M. Then N / K is a proper R-ideal of M / K. Let $a, b \in R$ and $m \in M$ be such that $a R b R(m+K) \subseteq N / K$. Let $s, t \in R$. Thus asbtm $+K=\operatorname{asbt}(m+K) \in a R b R(m+K) \subseteq N / K$. Then there exists $n \in N$ such that asbtm $+K=n+K$ so that $-n+\operatorname{asbtm} \in K \subseteq N$ and then asbtm $\in N$. This shows that $a R b R m \subseteq N$. As a result, $a m \in N$ or $b m \in N$ or $a b M \subseteq N$ because N is a 2-absorbing R-ideal of M. Therefore, $a(m+K) \in N / K$ or $b(m+K) \in N / K$ or $a b(M / K) \subseteq N / K$. Hence N / K is a 2 -absorbing R-ideal of M / K.

Conversely, assume that N / K is a 2 -absorbing R-ideal of M / K. Then N is a proper R-ideal of M. Let $a, b \in R$ and $m \in M$ be such that $a R b R m \subseteq N$. Then $a R b R(m+K) \subseteq N / K$. Since N / K is a 2 -absorbing R-ideal of M / K, we obtain that $a(m+K) \in N / K$ or $b(m+K) \in N / K$ or $a b(M / K) \subseteq N / K$. That is $a m \in N$ or $b m \in N$ or $a b M \subseteq N$. This implies that N is a 2-absorbing R-ideal of M.

Since a near ring R is also an R-module, 2 -absorbing ideals of a near ring R are special cases of 2 -absorbing R-ideals of the R-module R. Then all properties of 2 -absorbing R-ideals of R-modules in this paper can be applied to 2 -absorbing R-ideals of the near ring R. For example, we also obtain that "The intersection of each pair of prime ideals of a near ring R is a 2-absorbing ideal of R "as a corollary of Theorem 3.1.

In 2015, Chinwarakorn and Pianskool [3] introduced almost generalized 2-absorbing ideals of commutative rings with identities which is a generalization of 2 -absorbing ideals of commutative rings with identities and investigated some properties of them on decomposable rings. This leads us to study some properties of 2 -absorbing R-ideals of decomposable near rings.

Definition 3.4. A near ring R is said to be a decomposable near ring if it is a product of nonzero near rings equipped by componentwise addition and multiplication.

Example 3.5. Let $R_{1}=(\{0,1\},+, \cdot)$ and $R_{2}=(\{0,1, a, b\},+, \cdot)$ be the near rings given in Example 2.3 and Example 2.5, respectively. Then $R_{1} \times R_{2}$ is a decomposable near ring.

Let $R=R_{1} \times R_{2} \times \cdots \times R_{n}$ be a decomposable near ring and let M_{i} be an R_{i}-module for all $i \in\{1,2, \ldots, n\}$. It is clear that the product of $M_{1}, M_{2}, \ldots, M_{n}$ is an R-module, i.e., $M_{1} \times M_{2} \times \cdots \times M_{n}$ is an R-module.

Proposition 3.6. Let N_{i} be an R_{i}-ideal of an R_{i}-module M_{i} for all $i \in\{1,2, \ldots, n\}$. Then $N_{1} \times N_{2} \times \cdots \times N_{n}$ is an R-ideal of M where $R=R_{1} \times R_{2} \times \cdots \times R_{n}$ and $M=M_{1} \times M_{2} \times \cdots \times M_{n}$.

Proof. The proof is straightforward.

Next, some properties of 2 -absorbing R-ideals on certain decomposable near rings are studied.

Lemma 3.7. Let M_{1} be an R_{1}-module, M_{2} be an R_{2}-module, $R=R_{1} \times R_{2}$ and $M=M_{1} \times M_{2}$. Then
(1) N_{1} is a 2-absorbing (prime) R_{1}-ideal of M_{1} if and only if $N_{1} \times M_{2}$ is a 2-absorbing (prime) R-ideal of M; and
(2) N_{2} is a 2-absorbing (prime) R_{2}-ideal of M_{2} if and only if $M_{1} \times N_{2}$ is a 2-absorbing (prime) R-ideal of M.

Proof. It suffices to prove only (1). First, assume that N_{1} is a 2 -absorbing R_{1}-ideal of M_{1}. Suppose that $(a, b) R(c, d) R\left(m_{1}, m_{2}\right) \subseteq N_{1} \times M_{2}$ where $(a, b),(c, d) \in R$ and $\left(m_{1}, m_{2}\right) \in M$. Then $\left(a R_{1} c R_{1} m_{1}, b R_{2} d R_{2} m_{2}\right)=(a, b) R(c, d) R\left(m_{1}, m_{2}\right) \subseteq N_{1} \times M_{2}$, i.e., $a R_{1} c R_{1} m_{1} \subseteq N_{1}$ and $b R_{2} d R_{2} m_{2} \subseteq M_{2}$. Since N_{1} is a 2-absorbing R_{1}-ideal of M_{1}, it follows that $a c M_{1} \subseteq N_{1}$ or $a m_{1} \in N_{1}$ or $c m_{1} \in N_{1}$. That is $(a, b)(c, d) M=\left(a c M_{1}, b d M_{2}\right) \subseteq N_{1} \times M_{2}$ or $(a, b)\left(m_{1}, m_{2}\right)=$ $\left(a m_{1}, b m_{2}\right) \in N_{1} \times M_{2}$ or $(c, d)\left(m_{1}, m_{2}\right)=\left(c m_{1}, d m_{2}\right) \in N_{1} \times M_{2}$. Therefore, $N_{1} \times M_{2}$ is a 2 -absorbing R-ideal of M.

Conversely, assume that $N_{1} \times M_{2}$ is a 2 -absorbing R-ideal of M. Let $a, b \in R_{1}$ and $m_{1} \in M_{1}$. Assume that $a R_{1} b R_{1} m_{1} \subseteq N_{1}$. Let $x, y \in R_{2}$ and $m_{2} \in M_{2}$. Then $(a, x) R(b, y) R\left(m_{1}, m_{2}\right)=$ $\left(a R_{1} b R_{1} m_{1}, x R_{2} y R_{2} m_{2}\right) \subseteq N_{1} \times M_{2}$. Since $N_{1} \times M_{2}$ is a 2 -absorbing R-ideal of M, it follows that $(a, x)(b, y) M \subseteq N_{1} \times M_{2}$ or $(a, x)\left(m_{1}, m_{2}\right) \in N_{1} \times M_{2}$ or $(b, y)\left(m_{1}, m_{2}\right) \in N_{1} \times M_{2}$. Then $\left(a b M_{1}, x y M_{2}\right)=(a, x)(b, y) M \subseteq N_{1} \times M_{2}$ or $\left(a m_{1}, x m_{2}\right)=(a, x)\left(m_{1}, m_{2}\right) \in N_{1} \times M_{2}$ or $\left(b m_{1}, y m_{2}\right)=(b, y)\left(m_{1}, m_{2}\right) \in N_{1} \times M_{2}$, i.e., $a b M_{1} \subseteq N_{1}$ or $a m_{1} \in N_{1}$ or $b m_{1} \in N_{1}$. Therefore, N_{1} is a 2 -absorbing R_{1}-ideal of M_{1}.

Theorem 3.8. Let $R=R_{1} \times R_{2} \times \cdots \times R_{n}$ be a decomposable near ring, M_{i} be an R_{i}-module, and N_{i} be an R_{i}-ideal of M_{i} for all $i \in\{1,2, \ldots, n\}$. Then N_{i} is a 2-absorbing (prime) R_{i}-ideal of M_{i} if and only if $M_{1} \times \cdots \times M_{i-1} \times N_{i} \times M_{i+1} \times \cdots \times M_{n}$ is a 2 -absorbing (prime) R-ideal of $M_{1} \times \cdots \times M_{n}$ for each $i \in\{1,2, \ldots, n\}$.

Proof. The result follows by applying Lemma 3.7.
Recall that a near ring R is a module over itself. Moreover, if I is a prime (2-absorbing) ideal of a near ring R, then I is a prime (2 -absorbing) R-ideal of the R-module R and vice versa.

Corollary 3.9. Let $R=R_{1} \times R_{2} \times \cdots \times R_{n}$ be a decomposable near ring and I_{i} be an ideal of R_{i} for all $i \in\{1,2, \ldots, n\}$. Then I_{i} is a 2-absorbing (prime) ideal of R_{i} if and only if $R_{1} \times \cdots \times R_{i-1} \times I_{i} \times R_{i+1} \times \cdots \times R_{n}$ is a 2-absorbing (prime) ideal of R for each $i \in\{1,2, \ldots, n\}$.

Next theorem shows a condition that makes $N_{1} \times N_{2}$ be a 2 -absorbing $\left(R_{1} \times R_{2}\right)$-ideal of an ($R_{1} \times R_{2}$)-module $M_{1} \times M_{2}$ where each N_{i} is a proper R_{i}-ideal of M_{i}.

Theorem 3.10. If N_{1} is a prime R_{1}-ideal of an R_{1}-module M_{1} and N_{2} is a prime R_{2}-ideal of an R_{2}-module M_{2}, then $N_{1} \times N_{2}$ is a 2-absorbing R-ideal of the R-module M where $R=R_{1} \times R_{2}$ and $M=M_{1} \times M_{2}$.

Proof. Assume that N_{1} is a prime R_{1}-ideal of an R_{1}-module M_{1} and N_{2} is a prime R_{2}-ideal of an R_{2}-module M_{2}. Then $N_{1} \times N_{2}$ is a proper R-ideal of M. Let $(a, b),(c, d) \in R_{1} \times R_{2}$ and $\left(m_{1}, m_{2}\right) \in M_{1} \times M_{2}$. Assume that $(a, b) R(c, d) R\left(m_{1}, m_{2}\right) \subseteq N_{1} \times N_{2}$ but $(a, b)(c, d) M \nsubseteq N_{1} \times N_{2}$ and $(a, b)\left(m_{1}, m_{2}\right) \notin N_{1} \times N_{2}$. Then we can conclude that (a) $a m_{1} \notin N_{1}$ or $a m_{2} \notin N_{2}$, and (b) $a c M_{1} \nsubseteq N_{1}$ or $b d M_{2} \nsubseteq N_{2}$. There are 4 cases to be considered:
(i) $a m_{1} \notin N_{1}$ and $a c M_{1} \nsubseteq N_{1}$
(ii) $a m_{2} \notin N_{2}$ and $b d M_{2} \nsubseteq N_{2}$
(iii) $a m_{1} \notin N_{1}$ and $b d M_{2} \nsubseteq N_{2}$
(iv) $a m_{2} \notin N_{2}$ and $a c M_{1} \nsubseteq N_{1}$.

We claim $(c, d)\left(m_{1}, m_{2}\right) \in N_{1} \times N_{2}$. First, we consider Case(i). Note that $a R_{1} c R_{1} m_{1} \subseteq N_{1}$ and $b R_{2} d R_{2} m_{2} \subseteq N_{2}$ because $\left(a R_{1} c R_{1} m_{1}, b R_{2} d R_{2} m_{2}\right)=(a, b) R(c, d) R\left(m_{1}, m_{2}\right) \subseteq N_{1} \times N_{2}$. Since N_{1} is a prime R_{1}-ideal of M_{1} and $a m_{1} \notin N_{1}$, we obtain from Proposition 2.25 that $c M_{1} \subseteq N_{1}$ so that $a c M_{1} \subseteq N_{1}$ which is a contradiction. Then Case(i) is not possible. In addition, Case(ii) is absurd.

Next, Case (iii) is considered. Similarly, $c M_{1} \subseteq N_{1}$. Thus $c m_{1} \in N_{1}$. Moreover, $b R_{2} d R_{2} m_{2} \subseteq$ N_{2}. Let $r \in R_{2}$. Then $b R_{2} d r m_{2} \subseteq N_{2}$. Since N_{2} is a prime R_{2}-ideal of M_{2}, we have $b M_{2} \subseteq N_{2}$ or $d r m_{2} \in N_{2}$. If $b M_{2} \subseteq N_{2}$, then $b d M_{2} \subseteq b M_{2} \subseteq N_{2}$ contradicts $b d M_{2} \nsubseteq N_{2}$. Then $d r m_{2} \in N_{2}$. That is $d R_{2} m_{2} \subseteq N_{2}$. And again, since N_{2} is a prime R_{2}-ideal of M_{2} and $b d M_{2} \nsubseteq N_{2}$, we get that $m_{2} \in N_{2}$ so that $d m_{2} \in N_{2}$. Therefore, $(c, d)\left(m_{1}, m_{2}\right)=\left(c m_{1}, d m_{2}\right) \in N_{1} \times N_{2}$.

The proof of Case(iv) is similar to that of Case(iii). Hence $N_{1} \times N_{2}$ is a 2 -absorbing R-ideal of M.

However, it is not necessary true that the product of prime R-ideals is a prime R-ideal. For example, let $N_{1}=\{0\}$ be the prime R_{1}-ideal of $M_{1}=\{0,1\}$ and $N_{2}=\{0, b\}$ be the prime $R_{2^{-}}$ ideal of $M_{2}=\{0,1, a, b\}$ given in Example 2.21 and Example 2.22, respectively. Let $R=R_{1} \times R_{2}$. Then $N_{1} \times N_{2}$ is not a prime R-ideal of $M_{1} \times M_{2}$ because $(0, a) R(1, b) \subseteq\{(0,0),(0, b)\}=N_{1} \times N_{2}$ but $(0, a),(1, b) \notin N_{1} \times N_{2}$.

We obtain from Theorem 3.10 that $I_{1} \times I_{2}$ is a 2-absorbing ideal of $R_{1} \times R_{2}$ where I_{1} and I_{2} are prime ideals of the near rings R_{1} and R_{2}, respectively. Moreover, if R_{1} and R_{2} are zero symmetric near rings, then the converse of Theorem 3.10 is true.
Theorem 3.11. Let R_{1} and R_{2} be zero symmetric near rings with identities, I_{1} and I_{2} be proper ideals of R_{1} and R_{2}, respectively. Then I_{1} is a prime ideal of R_{1} and I_{2} is a prime ideal of R_{2} if and only if $I_{1} \times I_{2}$ is a 2-absorbing ideal of $R_{1} \times R_{2}$.
Proof. To prove the sufficient part, assume that $I_{1} \times I_{2}$ is a 2-absorbing ideal of $R_{1} \times R_{2}$. Let $a, b \in R_{1}$ and $x, y \in R_{2}$. Suppose that $a R_{1} b \subseteq I_{1}$ and $x R_{2} y \subseteq I_{2}$. Then $a R_{1} 1 R_{1} b \subseteq I_{1}$ and $x y=x 1 y \in x R_{2} y \subseteq I_{2}$. Since I_{2} is an ideal of R_{2} and $x y \in I_{2}$, we obtain that $x y R_{2} \subseteq$ I_{2}. Moreover, $R_{2} x y R_{2} \subseteq R I_{2} \subseteq I_{2}$ because R_{2} is a zero symmetric near ring. Note that $(a, 1) R(1, x y) R(b, 1)=\left(a R_{1} 1 R_{1} b, 1 R_{2} x y R_{2} 1\right) \subseteq I_{1} \times I_{2}$. Since $I_{1} \times I_{2}$ is a 2 -absorbing ideal of $R_{1} \times R_{2}$, it follows that $(a, 1)(1, x y) \in I_{1} \times I_{2}$ or $(1, x y)(b, 1) \in I_{1} \times I_{2}$ or $(a, 1)(b, 1) \in I_{1} \times I_{2}$, i.e., $(a, x y) \in I_{1} \times I_{2}$ or $(b, x y) \in I_{1} \times I_{2}$ or $\left(a b, 1_{2}\right) \in I_{1} \times I_{2}$. But I_{2} is a proper ideal of R_{2} so that $(a b, 1) \in I_{1} \times I_{2}$ is not possible. Hence $(a, x y) \in I_{1} \times I_{2}$ or $(b, x y) \in I_{1} \times I_{2}$. Thus $a \in I_{1}$ or $b \in I_{1}$. Therefore, I_{1} is a 2-absorbing ideal of R_{1}. Similarly, we obtain that I_{2} is a 2 -absorbing ideal of R_{2}.

The last result provides a characterization of being a 2-absorbing ideal of the ideal $I_{1} \times I_{2} \times I_{3}$ of a decomposable near ring where I_{1} is proper.
Theorem 3.12. Let $R=R_{1} \times R_{2} \times R_{3}$ where R_{1}, R_{2} and R_{3} are zero symmetric near rings with identities, I_{1} be a proper ideal of R_{1}, I_{2} and I_{3} be ideals of R_{2} and R_{3}, respectively. Then the following statements are equivalent.
(1) $I_{1} \times I_{2} \times I_{3}$ is a 2-absorbing ideal of R.
(2) I_{1} is 2-absorbing ideal of $R_{1}, I_{2}=R_{2}$ and $I_{3}=R_{3}$ or I_{1}, I_{2} are prime ideals and $I_{3}=R_{3}$ or I_{1}, I_{3} are prime ideals and $I_{2}=R_{2}$.

Proof. First, assume that $I:=I_{1} \times I_{2} \times I_{3}$ is a 2-absorbing ideal of R. Then I is a nonempty subset of R. Let $(a, b, c) \in I$. Note that $(a, 1,1) R(1, b, 1) R(1,1, c)=\left(a R_{1}, R_{2} b R_{2}, R_{3} c\right) \subseteq$ $I_{1} \times I_{2} \times I_{3}=I$ because I_{1}, I_{2} and I_{3} are ideals of zero symmetric near rings. Since I is a 2-absorbing ideal of $R,(a, 1,1)(1, b, 1) \in I$ or $(1, b, 1)(1,1, c) \in I$ or $(a, 1,1)(1,1, c) \in I$, i.e., $(a, b, 1) \in I$ or $(1, b, c) \in I$ or $(a, 1, c) \in I$. Then $I_{3}=R_{3}$ or $I_{1}=R_{1}$ or $I_{2}=R_{2}$. But I_{1} is a proper ideal of R_{1}, it follows that $I_{3}=R_{3}$ or $I_{2}=R_{2}$. This reaches to 3 cases:
(i) $I_{2}=R_{2}$ and $I_{3}=R_{3}$,
(ii) $I_{2} \neq R_{2}$ or $I_{3}=R_{3}$,
(iii) $I_{2}=R_{2}$ or $I_{3} \neq R_{3}$.

The first case leads to the result that $I=I_{1} \times\left(R_{2} \times R_{3}\right)$ where I_{1} is 2-absorbing ideal of R_{1} by Corollary 3.9. Next, we proof the second case by showing that I_{1} and I_{2} are prime ideals. Let $a, b \in R_{1}$ and $x, y \in R_{2}$. Assume that $a R_{1} b \subseteq I_{1}$ and $x R_{2} y \subseteq I_{2}$. Then $(a, 1,1) R(1, x y, 1) R(b, 1,1)=\left(a R_{1} b, R_{2} x y R_{2}, R_{3}\right) \subseteq I_{1} \times I_{2} \times I_{3}=I$ because I_{2} is an ideal of the zero symmetric near ring R_{2}. Since I ia a 2 -absorbing ideal of $R,(a, 1,1)(1, x y, 1) \in I$ or $(1, x y, 1)(b, 1,1) \in I$ or $(a, 1,1)(b, 1,1) \in I$, i.e., $(a, x y, 1) \in I$ or $(b, x y, 1) \in I$ or $(a b, 1,1) \in I$. Since $I_{2} \neq R_{2}$, it follows that $(a, x y, 1) \in I$ or $(b, x y, 1) \in I$. That is $a \in I_{1}$ or $b \in I_{1}$. Therefore, I_{1} is a prime ideal of R_{1}. Similarly, we obtain that I_{2} is a prime ideal of R_{2}. The proof of Case(iii) is similar to that of Case(ii).

Conversely, if $I=I_{1} \times R_{2} \times R_{3}$ and I_{1} is a 2-absorbing ideal of R_{1}, then I is a 2-absorbing ideal of R by Corollary 3.9 because $R_{2} \times R_{3}$ is a near ring. Consider Case(ii), since I_{1} and I_{2} are prime ideals, $I_{1} \times I_{2}$ is a 2 -absorbing ideal by Theorem 3.11. It is easy to verify that I is a 2 -absorbing ideal of R by Corollary 3.9 again. The last case is similar to the previous case.

By the results of Theorem 3.11 and Theorem 3.12, we can see that, in order to obtain these results, being a zero symmetric near ring with identity is crucial.

References

[1] A. Badawi, On 2-absorbing ideals of commutative rings, Bull. Aust. Math. Soc., 75 (2007), 417-429.
[2] G.L. Booth and N.J. Groenewald, Special radicals of near-ring modules, Quaest. Math., 15 (1992), 127-137.
[3] S. Chinwarakorn and S. Pianskool, On almost generalized 2-absorbing and weakly almost generalized 2-absorbing structures, ScienceAsia, 41 (2015), 64-72.
[4] A. Darani and F. Soheilnia, 2-absorbing and weakly 2-absorbing submodules, Thai J. Math., 9 (2011), 577-584.
[5] J. Dauns, Prime modules, J. Reine Angew. Math., 298 (1978), 156-181.
[6] L.E. Dickson, Definitions of a group and a field by independent pustulates, Amer. Math., 6 (1905), 198-204.
[7] N.J. Groenewald, Different prime ideals, Comm. in Algebra, 19 (1991), 2667-2675.
[8] M. Ibrahem, On 3-prime ideal with respect to an element of a near ring, Journal of Kufa for Mathematics and Computer, 2 (2014), 41-48.
[9] S. Juglal, Prime near ring modules and their link with the generalized group near ring, (Ph.D.thesis), Nelson Mandela Metropolitan Univ., (2007).

[^0]: ${ }^{\dagger}$ Corresponding author.
 ${ }^{\ddagger}$ Speaker.
 E-mail address: sutidapatlert@gmail.com (S. Patlertsin), Sajee.P@chula.ac.th (S. Pianskool).

